Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921946
1.
1.Timothy David Veal, Christopher F. McConville, and William J. Schaff, Indium Nitride and Related Alloys (CRC Press, Taylor and Francis, 2010).
2.
2.B. Gil, Group III nitride semiconductor compounds Physics and applications (Clarendon Press, Oxford, 1998).
3.
3.S. N. Mohammad and H. Morkoç, “Progress and prospects of group-III nitride semiconductors,” Progress in Quantum Electronics 20, 361-525 (1996).
http://dx.doi.org/10.1016/S0079-6727(96)00002-X
4.
4.A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” Journal of Applied Physics 94, 2779-2808 (2003).
http://dx.doi.org/10.1063/1.1595135
5.
5.G. Cheng, E. Stern, D. Turner-Evans, and M. A. Reed, “Electronic properties of InN nanowires,” Applied Physics Letters 87, 253103-3 (2005).
http://dx.doi.org/10.1063/1.2141927
6.
6.B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, “Electrically injected near-infrared light emission from single InN nanowire p-i-n diode,” Applied Physics Letters 105, 231124-3 (2014).
http://dx.doi.org/10.1063/1.4904271
7.
7.J. Chen, G. Cheng, E. Stern, M. A. Reed, and P. Avouris, “Electrically excited infrared emission from InN nanowire transistors,” Nano Letters 7, 2276-2280 (2007).
http://dx.doi.org/10.1021/nl070852y
8.
8.H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n nanowire solar cells on Si,” IEEE Journal of Selected Topics in Quantum Electronics 17, 1062-1069 (2011).
http://dx.doi.org/10.1109/JSTQE.2010.2082505
9.
9.H. Ahn, Y. P. Ku, Y. C. Wang, C. H. Chuang, S. Gwo, and C. L. Pan, “Terahertz spectroscopic study of vertically aligned InN nanorods,” Applied Physics Letters 91, 163105-3 (2007).
http://dx.doi.org/10.1063/1.2800292
10.
10.M. Kumar, T. N. Bhat, M. K. Rajpalke, B. Rou, A. T. Kalghatgi, and S B Krupanidhi, “Transport and infrared photoresponse properties of InN nanorods/Si heterojunction,” Nanoscale Research Letters 6, 609 (2011).
http://dx.doi.org/10.1186/1556-276X-6-609
11.
11.M. C. Johnson, C. J. Lee, and E. D. Bourret-Courchesne, “Growth and morphology of 0.80 eV photoemitting indium nitride nanowires,” Applied Physics Letters 85, 5670-5672 (2004).
http://dx.doi.org/10.1063/1.1831563
12.
12.R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, and C. R. Lin, “High-gain photoconductivity in semiconducting InN nanowires,” Applied Physics Letters 95, 162112-3 (2009).
http://dx.doi.org/10.1063/1.3242023
13.
13.T. Richter, H. Lüth, T. Schäpers, R. Meijers, K. Jeganathan, S. E. Hernández, R. Calarco, and M. Marso, “Electrical transport properties of single undoped and n-type doped InN nanowires,” Nanotechnology 20, 405206-6 (2009).
http://dx.doi.org/10.1088/0957-4484/20/40/405206
14.
14.C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, “Single-InN-nanowire nanogenerator with upto 1 V output voltage,” Advanced Materials 22, 40084013 (2010).
http://dx.doi.org/10.1002/adma.201000981
15.
15.Z. Cai, S. Garzon, M. V. S. Chandrashekhar, R. A. Webb, and G. Koley, “Synthesis and properties of high-quality InN nanowires and nanonetworks,” Journal of Electronic Materials 37, 585-592 (2008).
http://dx.doi.org/10.1007/s11664-007-0353-8
16.
16.H. Liu and G. Cheng, “Indium predeposition-enabled vapor–liquid–solid growth of InN nanowires,” Applied Physics Express 4, 105002 (2011).
http://dx.doi.org/10.1143/APEX.4.105002
17.
17.T. Tang, S. Han, W. Jin, X. Liu, C. Li, D. Zhang, C. Zhoua, B. Chen, J. Han, and M. Meyyapan, “Synthesis and characterization of single-crystal indium nitride nanowires,” Journal of Material Research 19, 423-426 (2004).
http://dx.doi.org/10.1557/jmr.2004.19.2.423
18.
18.S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B. W. Alphenaar, and M. K. Sunkara, “Mechanisms of 1D crystal growth in reactive vapor transport: indium nitride nanowires,” Nano Letter 5, 1625-31 (2005).
http://dx.doi.org/10.1021/nl0505804
19.
19.S. Barthel, K. Schuh, O. Marquardt, T. Hickel, J. Neugebauer, F. Jahnke, and G. Czycholl, “Inter Interplay between Coulomb interaction and quantum-confined Stark-effect in polar and nonpolar wurtzite InN/GaN quantum dots,” The European Physical Journal B 86, 449-11 (2013).
http://dx.doi.org/10.1140/epjb/e2013-40542-0
20.
20.A. K. Mann, D. Varandani, B. Mehta, L. K. Malhotra, G. Mangamma, and A. K. Tyagi, “Formation of InN nanoparticle and nanorod structures by nitrogen plasma annealing method,” Bulletin of Material Science 31, 233240 (2008).
http://dx.doi.org/10.1007/s12034-008-0041-1
21.
21.J. Zhang, L. Zhang, X. Peng, and X. Wang, “Vapor–solid growth route to single-crystalline indium nitride nanowires,” Journal of Material Chemistry 12, 802804 (2002).
http://dx.doi.org/10.1039/b111270h
22.
22.Q. X. Guo, M. Nishio, H. Ogawa, A. Wakahara, and A. Yoshida, “Electronic structure of indium nitride studied by photoelectron spectroscopy,” Physical Review B 58, 15304-15306 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15304
23.
23.E. B. Quddus, A. Wilson, R. A. Webb, and G. Koley, “Oxygen mediated synthesis of high quality InN nanowires above their decomposition temperature,” Nanoscale 6, 1166-1172 (2014).
http://dx.doi.org/10.1039/C3NR03991A
24.
24.A. Knübel, R. Aidam, V. Cimalla, L. Kirste, M. Baeumler, C. C. Leancu, V. Lebedev, J. Wallauer, M. Walther, and J. Wagner, “Transport characteristics of indium nitride (InN) films grown by plasma assisted molecular beam epitaxy (PAMBE),” Physica Status Solidi C 6, 14801483 (2009).
http://dx.doi.org/10.1002/pssc.200881516
25.
25.K. A. Rickert, A. B. Ellis, F. J. Himpsel, H. Lu, W. Schaff, J. M. Redwing, F. Dwikusuma, and T. F. Kuech, “X-ray photoemission spectroscopic investigation of surface treatments, metal deposition, and electron accumulation on InN,” Applied Physics Letters 82, 32543256 (2003).
http://dx.doi.org/10.1063/1.1573351
26.
26.M. K. Hudait, P. Modak, and S. B. Krupanidhi, “Si incorporation and Burstein–Moss shift in n-type GaAs,” Materials Science and Engineering B 56, 111 (1999).
http://dx.doi.org/10.1016/S0921-5107(99)00016-1
27.
27.Jaime A. Segura Ruiz, “Electronic and vibrational states of InN and GaInN nanocolumns,” Ph.D. thesis, (2009).
28.
28.A. Cantarero, “Review of Raman scattering in semiconductor nanowires. I. Theory,” Journal of Nanaphotonics 7, 071598 (2013).
http://dx.doi.org/10.1117/1.JNP.7.071598
29.
29.S. Sahoo, M. S. Hu, C. W. Hsu, C. T. Wu, K. H. Chen, L. C. Chen, A. K. Arora, and S. Dhara, “Surface optical Raman modes in InN nanostructures,” Applied Physics Letter 93, 233116-3 (2008).
http://dx.doi.org/10.1063/1.3040681
30.
30.R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, and C. R. Lin, “Photoconduction mechanism of oxygen sensitization in InN nanowires,” Nanotechnology 22, 425702-5 (2011).
http://dx.doi.org/10.1088/0957-4484/22/42/425702
31.
31.D. V. Lang and R. A. Logan, Large-Lattice-Relaxation model for persistent photoconductivity in compound semiconductors, 39 (1977) 635-639.
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921946
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921946
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921946
2015-05-28
2016-12-04

Abstract

Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921946.html;jsessionid=V_Zl8dbuZS07dBaY0P2qp9Z1.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921946&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921946&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921946'
Right1,Right2,Right3,