Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, J. Disp. Technol. 3, 160 (2007).
2.M. H. Crawford, IEEE J. Sel. Top. Quantum Electron. 15, 1028 (2009).
3.J. Cho, E. F. Schubert, and J. K. Kim, Laser Photon. Rev. 7, 408 (2013).
4.J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, Adv. Opt. Mater. 2, 809 (2014).
5.J. McKittrick and L. E. Shea-Rohwer, J. Am. Ceram. Soc. 97, 1327 (2014).
6.B. Damilano, N. Grandjean, C. Pernot, J. Massies, B. D. Amilano, N. G. Randjean, C. P. Ernot, and J. M. Assies, Jpn. J. Appl. Phys. 40, L918 (2001).
7.M. Yamada, Y. Narukawa, and T. Mukai, Jpn. J. Appl. Phys. 41, L246 (2002).
8.S. Lee, H. S. Paek, H. Kim, T. Jang, and Y. Park, Appl. Phys. Lett. 92, 081107 (2008).
9.C. Lu, C. Huang, Y. Chen, W. Shiao, C. Chen, Y. Lu, and C. C. Yang, IEEE J. Sel. Top. Quantum Electron. 15, 1210 (2009).
10.H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, Appl. Phys. Express 6, 102103 (2013).
11.C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, Appl. Phys. Lett. 92, 261909 (2008).
12.S. Jahangir, I. Pietzonka, M. Strassburg, and P. Bhattacharya, Appl. Phys. Lett. 105, 111117 (2014).
13.H. Lin, Y. Lu, H. Chen, H. Lee, and S. Gwo, Appl. Phys. Lett. 97, 073101 (2010).
14.H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11, 1919 (2011).
15.W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, Appl. Phys. Lett. 98, 193102 (2011).
16.T. Kim, J. Kim, M. Yang, Y. Park, U. Chung, Y. Ko, and Y. Cho, Proc. SPIE LEDs Mater. Devices, Appl. Solid State Light. XVII 8641, 86410E (2013).
17.K. Wu, T. Wei, H. Zheng, D. Lan, X. Wei, Q. Hu, H. Lu, J. Wang, Y. Luo, and J. Li, J. Appl. Phys. 115, 123101 (2014).
18.M. Funato, K. Hayashi, M. Ueda, Y. Kawakami, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 93, 021126 (2008).
19.C. Cho, I. Park, M. Kwon, J. Kim, S. Park, D. Jung, and K. Kwon, Appl. Phys. Lett. 93, 241109 (2008).
20.H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, Opt. Express 19, A991 (2011).
21.C. K. Tan and N. Tansu, Nat. Nanotechnol. 10, 107 (2015).
22.J. Zhang and N. Tansu, J. Appl. Phys. 110, 113110 (2011).
23.J. Zhang and N. Tansu, IEEE Photonics J. 5, 2600111 (2013).
24.M. Shimizu, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki, Solid. State. Electron. 41, 145 (1997).
25.D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, J. Appl. Phys. 84, 1389 (1998).
26.S. Chu, T. Saisho, K. Fujimura, S. Sakakibara, F. Tanoue, K. Ishino, A. Ishida, H. Harima, Y. Chen, T. Yao, and H. Fujiyasu, Jpn. J. Appl. Phys. 38, L427 (1999).
27.T. L. Williamson, M. A. Hoffbauer, K. M. Yu, L. A. Reichertz, M. E. Hawkridge, R. E. Jones, N. Miller, J. W. Ager III, Z. Liliental-Weber, and W. Walukiewicz, Phys. Status Solidi 6, S409 (2009).
28.M. A. Hoffbauer, T. L. Williamson, J. J. Williams, J. L. Fordham, K. M. Yu, W. Walukiewicz, and L. A. Reichertz, J. Vac. Sci. Technol. B 31, 03C114 (2013).
29.APSYS, Burn. BC, Canada.
30.I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
31.I. Vurgaftman and J. R. Meyer, in Nitride Semiconductor Devices, edited by Piprek (Wiley, New York, 2007), Chap. 2.
32.G. Liu, J. Zhang, C. K. Tan, and N. Tansu, IEEE Photonics J. 5, 2201011 (2013).

Data & Media loading...


Article metrics loading...



Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ∼ 8200 K at J = 50 A/cm2. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd