Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4922008
1.
1.M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, J. Disp. Technol. 3, 160 (2007).
http://dx.doi.org/10.1109/JDT.2007.895339
2.
2.M. H. Crawford, IEEE J. Sel. Top. Quantum Electron. 15, 1028 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2013476
3.
3.J. Cho, E. F. Schubert, and J. K. Kim, Laser Photon. Rev. 7, 408 (2013).
http://dx.doi.org/10.1002/lpor.201200025
4.
4.J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, Adv. Opt. Mater. 2, 809 (2014).
http://dx.doi.org/10.1002/adom.201400131
5.
5.J. McKittrick and L. E. Shea-Rohwer, J. Am. Ceram. Soc. 97, 1327 (2014).
http://dx.doi.org/10.1111/jace.12943
6.
6.B. Damilano, N. Grandjean, C. Pernot, J. Massies, B. D. Amilano, N. G. Randjean, C. P. Ernot, and J. M. Assies, Jpn. J. Appl. Phys. 40, L918 (2001).
http://dx.doi.org/10.1143/JJAP.40.L918
7.
7.M. Yamada, Y. Narukawa, and T. Mukai, Jpn. J. Appl. Phys. 41, L246 (2002).
http://dx.doi.org/10.1143/JJAP.41.L246
8.
8.S. Lee, H. S. Paek, H. Kim, T. Jang, and Y. Park, Appl. Phys. Lett. 92, 081107 (2008).
http://dx.doi.org/10.1063/1.2887884
9.
9.C. Lu, C. Huang, Y. Chen, W. Shiao, C. Chen, Y. Lu, and C. C. Yang, IEEE J. Sel. Top. Quantum Electron. 15, 1210 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2013184
10.
10.H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, Appl. Phys. Express 6, 102103 (2013).
http://dx.doi.org/10.7567/APEX.6.102103
11.
11.C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, Appl. Phys. Lett. 92, 261909 (2008).
http://dx.doi.org/10.1063/1.2952459
12.
12.S. Jahangir, I. Pietzonka, M. Strassburg, and P. Bhattacharya, Appl. Phys. Lett. 105, 111117 (2014).
http://dx.doi.org/10.1063/1.4896304
13.
13.H. Lin, Y. Lu, H. Chen, H. Lee, and S. Gwo, Appl. Phys. Lett. 97, 073101 (2010).
http://dx.doi.org/10.1063/1.3478515
14.
14.H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11, 1919 (2011).
http://dx.doi.org/10.1021/nl104536x
15.
15.W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, Appl. Phys. Lett. 98, 193102 (2011).
http://dx.doi.org/10.1063/1.3588201
16.
16.T. Kim, J. Kim, M. Yang, Y. Park, U. Chung, Y. Ko, and Y. Cho, Proc. SPIE LEDs Mater. Devices, Appl. Solid State Light. XVII 8641, 86410E (2013).
17.
17.K. Wu, T. Wei, H. Zheng, D. Lan, X. Wei, Q. Hu, H. Lu, J. Wang, Y. Luo, and J. Li, J. Appl. Phys. 115, 123101 (2014).
http://dx.doi.org/10.1063/1.4869336
18.
18.M. Funato, K. Hayashi, M. Ueda, Y. Kawakami, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 93, 021126 (2008).
http://dx.doi.org/10.1063/1.2956404
19.
19.C. Cho, I. Park, M. Kwon, J. Kim, S. Park, D. Jung, and K. Kwon, Appl. Phys. Lett. 93, 241109 (2008).
http://dx.doi.org/10.1063/1.3049607
20.
20.H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, Opt. Express 19, A991 (2011).
http://dx.doi.org/10.1364/OE.19.00A991
21.
21.C. K. Tan and N. Tansu, Nat. Nanotechnol. 10, 107 (2015).
http://dx.doi.org/10.1038/nnano.2014.333
22.
22.J. Zhang and N. Tansu, J. Appl. Phys. 110, 113110 (2011).
http://dx.doi.org/10.1063/1.3668117
23.
23.J. Zhang and N. Tansu, IEEE Photonics J. 5, 2600111 (2013).
http://dx.doi.org/10.1109/JPHOT.2013.2247587
24.
24.M. Shimizu, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki, Solid. State. Electron. 41, 145 (1997).
http://dx.doi.org/10.1016/S0038-1101(96)00155-4
25.
25.D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, J. Appl. Phys. 84, 1389 (1998).
http://dx.doi.org/10.1063/1.368251
26.
26.S. Chu, T. Saisho, K. Fujimura, S. Sakakibara, F. Tanoue, K. Ishino, A. Ishida, H. Harima, Y. Chen, T. Yao, and H. Fujiyasu, Jpn. J. Appl. Phys. 38, L427 (1999).
http://dx.doi.org/10.1143/JJAP.38.L427
27.
27.T. L. Williamson, M. A. Hoffbauer, K. M. Yu, L. A. Reichertz, M. E. Hawkridge, R. E. Jones, N. Miller, J. W. Ager III, Z. Liliental-Weber, and W. Walukiewicz, Phys. Status Solidi 6, S409 (2009).
http://dx.doi.org/10.1002/pssc.200880956
28.
28.M. A. Hoffbauer, T. L. Williamson, J. J. Williams, J. L. Fordham, K. M. Yu, W. Walukiewicz, and L. A. Reichertz, J. Vac. Sci. Technol. B 31, 03C114 (2013).
http://dx.doi.org/10.1116/1.4794788
29.
29.APSYS, Burn. BC, Canada. http://www.crosslight.com.
30.
30.I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
http://dx.doi.org/10.1063/1.1600519
31.
31.I. Vurgaftman and J. R. Meyer, in Nitride Semiconductor Devices, edited by Piprek (Wiley, New York, 2007), Chap. 2.
32.
32.G. Liu, J. Zhang, C. K. Tan, and N. Tansu, IEEE Photonics J. 5, 2201011 (2013).
http://dx.doi.org/10.1109/JPHOT.2013.2255028
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4922008
Loading
/content/aip/journal/adva/5/5/10.1063/1.4922008
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4922008
2015-05-29
2016-09-25

Abstract

Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ∼ 8200 K at J = 50 A/cm2. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4922008.html;jsessionid=swVoDocMpSmrEh2WCyRHlCM4.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4922008&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4922008&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4922008'
Right1,Right2,Right3,