Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4922170
1.
1.D. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.077405
2.
2.K. V. Sreekanth, A. De Luca, and G. Strangi, Appl. Phys. Lett. 103, 023107 (2013).
http://dx.doi.org/10.1063/1.4813477
3.
3.C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alu, Opt. Express 21, 15037 (2013).
http://dx.doi.org/10.1364/OE.21.015037
4.
4.L. V. A. a. E. N. Zubin Jacob, Opt. Express 14, 8247 (2006).
http://dx.doi.org/10.1364/OE.14.008247
5.
5.Y. He, S. He, and X. Yang, Opt. lett. 37, 2907 (2012).
http://dx.doi.org/10.1364/OL.37.002907
6.
6.O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, Phys. Rev. A 85, 053842 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.053842
7.
7.C. Argyropoulos, F. Monticone, N. M. Estakhri, and A. Alù, Int. J Antenn. Propag. 2014 (2014).
8.
8.Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, Advances in OptoElectronics 2012 (2012).
http://dx.doi.org/10.1155/2012/452502
9.
9.D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, Sci. Rep. 4, 4498 (2014).
10.
10.I. I. Smolyaninov, J. Opt. 13, 125101 (2011).
http://dx.doi.org/10.1088/2040-8978/13/12/125101
11.
11.M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, Appl. Phys. Lett. 94, 151105 (2009).
http://dx.doi.org/10.1063/1.3115145
12.
12.C. Guclu, S. Campione, and F. Capolino, Phys. Rev. B 86, 205130 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205130
13.
13.T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, Appl. Phys. Lett. 100, 161103 (2012).
http://dx.doi.org/10.1063/1.4703931
14.
14.Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, and Y. Wang, ACS Nano 7, 2388 (2013).
http://dx.doi.org/10.1021/nn3055835
15.
15.J. T. Liu, N. H. Liu, L. Wang, X. H. Deng, and F. H. Su, EPL (Europhysics Letters) 104, 57002 (2013).
http://dx.doi.org/10.1209/0295-5075/104/57002
16.
16.F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206 (2008).
http://dx.doi.org/10.1126/science.1152793
17.
17.A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, Appl. Phys. Lett. 101, 151119 (2012).
http://dx.doi.org/10.1063/1.4760230
18.
18.R. R. Nair, P. Blake, A. NGrigorenko, K. S. Novoselov, and T. J. Booth, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
19.
19.M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, Nano Lett. 12, 2773 (2012).
http://dx.doi.org/10.1021/nl204512x
20.
20.I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, J. Opt. 15, 114003 (2013).
http://dx.doi.org/10.1088/2040-8978/15/11/114003
21.
21.Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, Sci. Rep. 4, 5483 (2014).
22.
22.MAK Othman, C Guclu, and F Capolino, Opt. Express 21, 7614 (2013).
http://dx.doi.org/10.1364/OE.21.007614
23.
23.M. Amin, M. Farhat, and H. Bagci, Opt. Express 21, 29938 (2013).
http://dx.doi.org/10.1364/OE.21.029938
24.
24.S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, Phys. Rev. Lett. 108, 047401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.047401
25.
25.M. Amin, M. Farhat, and H. Bagci, Sci. Rep. 3, 2105 (2013).
26.
26.L. Falkovsky and S. Pershoguba, Phys. Rev. B 76, 153410 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.153410
27.
27.L. Falkovsky, Journal of Physics: Conference Series 129, 012004 (2008).
http://dx.doi.org/10.1088/1742-6596/129/1/012004
28.
28.M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, Opt. Express 21, 11618 (2013).
http://dx.doi.org/10.1364/OE.21.011618
29.
29.A. Vakil and N. Engheta, Science 332, 1291 (2011).
http://dx.doi.org/10.1126/science.1202691
30.
30.A. M. DaSilva, Y. C. Chang, T. Norris, and A. H. MacDonald, Phys. Rev. B 88, 195411 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.195411
31.
31.W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, Appl. Phys. Lett. 104, 051902 (2014).
http://dx.doi.org/10.1063/1.4863929
32.
32.R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, Eur. Phys. J-Appl. Phys. 68, 20401 (2014).
http://dx.doi.org/10.1051/epjap/2014140221
33.
33.T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, J. Phys.: Condensed Matter 25, 215301 (2013).
http://dx.doi.org/10.1088/0953-8984/25/21/215301
34.
34.R. Ning, S. Liu, H. Zhang, X. Kong, B. Bian, and J. Bao, J. Opt. 16, 125108 (2014).
http://dx.doi.org/10.1088/2040-8978/16/12/125108
35.
35.N. Laman and D. Grischkowsky, Applied Physics Letters 93, 051105 (2008).
http://dx.doi.org/10.1063/1.2968308
36.
36.L. Zhang, Z. Zhang, C. Kang, B. Cheng, L. Chen, X. Yang, J. Wang, W. Li, and B. Wang, Opt. Express 22, 9 (2014).
http://dx.doi.org/10.1364/OE.22.000009
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4922170
Loading
/content/aip/journal/adva/5/6/10.1063/1.4922170
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4922170
2015-06-02
2016-12-07

Abstract

The use of a dual-gated tunable absorber in graphene-based hyperbolic metamaterial (GHMM) in the near-infrared frequency range was investigated. The horizontal and vertical parts for relative permittivity of GHMM, which consists of monolayer graphene and conventional dielectric, were tuned using the chemical potential. To obtain a large absorption, GHMM was placed on top of a stacked structure containing dielectric and graphene layers and a copper reflector was placed at the bottom. The dual-gated absorber had multiband absorption, which was tuned using the chemical potential of graphene and GHMM. This study focuses on the variation of the absorption with change in the chemical potential and dielectric thickness. The results show that multiband absorption could be attained when chemical potential and dielectric thickness was changed. Broadband absorption could be generated when the frequency ranged from 215 THz to 250 THz. This phenomenon may be valuable for a variety of important applications including optical communication technology and near-infrared stealth communication.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4922170.html;jsessionid=3xqFXAuiESJxuajnncvRxZF0.x-aip-live-03?itemId=/content/aip/journal/adva/5/6/10.1063/1.4922170&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4922170&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4922170'
Right1,Right2,Right3,