Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4922190
1.
1.C.-S. Shin, W.-K. Park, SH. Shin, YD. Cho, DH. Ko, T.-W. Kim, D. H. Koh, HM. Kwon, R. J. W. Hill, P. Kirsch, W. Maszara, and D.-H. Kim, VLSI Symp. Tech. Dig. 1 (2014).
2.
2.J. A. del Alamo, Nature 479, 317 (2011).
http://dx.doi.org/10.1038/nature10677
3.
3.S.-H. Chen, W.-S. Liao, H.-C. Yang, S.-J. Wang, Y.-G. Liaw, H. Wang, H. Gu, and M.-C. Wang, Nanoscale Res. Lett. 7, 431 (2012).
http://dx.doi.org/10.1186/1556-276X-7-431
4.
4.J. P. Colinge, A. Krantib, R. Yanb, I. Ferainb, N. D. Akhavanb, P. Razavic, C.-W. Leec, R. Yud, and C. Colinge, ECS Trans. 35, 63 (2011).
5.
5.J. H. Seo, S. Cho, and I. M. Kang, Semicond. Sci. Technol. 28, 105007 (2013).
http://dx.doi.org/10.1088/0268-1242/28/10/105007
6.
6.I.-H. Ahn and H. Joung, Jpn. J. Appl. Phys. 49, 084303 (2010).
http://dx.doi.org/10.1143/JJAP.49.084303
7.
7.D.-H. Kim, T.-W. Kim, RH. Baek, P. D. Kirsch, W. Maszara, J. A. del Alamo, D. A. Antoniadis, M. Urteaga, B. Brar, HM. Kwon, C.-S. Shin, W.-K. Park, Y.-D. Cho, SH. Shin, DH. Ko, and K.-S. Seo, IEDM Tech. Dig. 25.2.1 (2014).
8.
8.Y. Takano, K. Kobayashi, T. Uranishi, and S. Fuke, Jpn. J. Appl. Phys. 49, 105502 (2010).
http://dx.doi.org/10.1143/JJAP.49.105502
9.
9.H.-C. Chin, X. Gong, L. Wang, H. K. Lee, L. Shi, and Y.-C. Yeo, IEEE Electron Device Lett. 32, 146 (2011).
http://dx.doi.org/10.1109/LED.2010.2091672
10.
10.Y. Li and W.-H. Chen, J. Comput. Electron. 5, 255 (2006).
http://dx.doi.org/10.1007/s10825-006-8854-x
11.
11.F. Xue, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, and J. C. Lee, Appl. Phys. Lett. 99, 033507 (2011).
http://dx.doi.org/10.1063/1.3611502
12.
12.C. Fiegna, Y. Yang, E. Sangiorgi, and A. G. O’Neill, IEEE Trans. Electron Devices 55, 233 (2008).
http://dx.doi.org/10.1109/TED.2007.911354
13.
13.X. Xu, R. Wang, R. Huang, J. Zhuge, G. Chen, Xing Zhang, and Y. Wang, IEEE Trans. Electron Devices 55, 3246 (2008).
http://dx.doi.org/10.1109/TED.2008.2004646
14.
14.Y. Li, H. M. Chou, and J. W. Lee, IEEE Trans. Nanotechnol. 4, 510 (2005).
http://dx.doi.org/10.1109/TNANO.2005.851410
15.
15.Y. Li and C.-H. Hwang, Jpn. J. Appl. Phys. 47, 2580 (2008).
http://dx.doi.org/10.1143/JJAP.47.2580
16.
16.Y. Li and C.-H. Hwang, Microelectron. Eng. 84, 2093 (2007).
http://dx.doi.org/10.1016/j.mee.2007.04.055
17.
17.Y. Li, C.-H. Hwang, and H.-W. Cheng, Microelectron. Eng. 86, 277 (2009).
http://dx.doi.org/10.1016/j.mee.2008.02.013
18.
18.Y. Li, H.-W. Chenga, and M.-H. Han, Comput. Phys. Commun. 182, 96 (2011).
http://dx.doi.org/10.1016/j.cpc.2010.07.018
19.
19.Y. Li, C.-H. Hwang, and M.-H. Han, Nanotechnology 21, 095203 (2010).
http://dx.doi.org/10.1088/0957-4484/21/9/095203
20.
20.H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, IEEE Trans. Electron Devices 57, 2504 (2010).
http://dx.doi.org/10.1109/TED.2010.2063191
21.
21.H. F. Dadgour and K. Endo, IEEE Trans. Electron Devices 57, 2515 (2010).
http://dx.doi.org/10.1109/TED.2010.2063270
22.
22.J. Hicks, D. Bergstrom, M. Hattendorf, J. Jopling, J. Maiz, S. Pae, C. Prasad, and J. Wiedemer, Intel Technology Journal 12, 131 (2008).
23.
23.M. M. Hussain, M. A. Quevedo-Lopez, H. N. Alshareef, H. C. Wen, D. Larison, B. Gnade, and M. El-Bouanani, Semicond. Sci. Technol. 21, 1437 (2006).
http://dx.doi.org/10.1088/0268-1242/21/10/012
24.
24.H.-W. Cheng, F.-H. Li, M.-H. Han, C.-Y. Yiu, C.-H. Yu, K.-F. Lee, and Y. Li, IEDM Tech. Dig. 379 (2010).
25.
25.J. L. Heu, Y. Setsuhara, I Shimizu, and S. Miyake, Surface and Coatings Tech. 137, 38 (2001).
http://dx.doi.org/10.1016/S0257-8972(00)01089-6
26.
26.N. Seoane, G. Indalecio, E. Comesaña, M. Aldegunde, A. J. García-Loureiro, and K. Kalna, IEEE Trans. Electron Devices 61, 466 (2014).
http://dx.doi.org/10.1109/TED.2013.2294213
27.
27.J. Mohseni and J. D. Meindl, IEEE Green Technol. Conf. 204 (2013).
28.
28.M.-D. Ko, C.-W. Sohn, C.-K. Baek, and Y.-H. Jeong, IEEE Trans. Electron Devices 60, 2721 (2013).
http://dx.doi.org/10.1109/TED.2013.2272789
29.
29.Y. Li and C.-H. Hwang, J. Appl. Phys. 102, 084509 (2007).
http://dx.doi.org/10.1063/1.2801013
30.
30.R. E. Nahory, M. A. Pollack, W. D. Johnston, Jr., and R. L. Barns, Appl. Phys. Lett. 33, 659 (1978).
http://dx.doi.org/10.1063/1.90455
31.
31.C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, IEEE Transactions on CAD 7, 1164V1171 (1988).
32.
32.C. Canali, G. Majni, R. Minder, and G. Ottaviani, IEEE Trans. Electron Devices 22, 1045V1047 (1975).
http://dx.doi.org/10.1109/T-ED.1975.18267
33.
33.F. Xue, A. Jiang, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, and J. Lee, IEEE Electron Device Lett. 33, 32 (2012).
http://dx.doi.org/10.1109/LED.2011.2172910
34.
34.N. M. Shrestha, Y. Li, and E. Y. Chang, Jpn. J. Appl. Phys. 53, 04EF08 (2014).
http://dx.doi.org/10.7567/JJAP.53.04EF08
35.
35.K. C. Sahoo, C.-I. Kuo, Y. Li, and E. Y. Chang, IEEE Trans. Electron Devices 57, 2594 (2010).
http://dx.doi.org/10.1109/TED.2010.2062521
36.
36.Y. Li, S. M. Sze, and T.-S. Chao, Eng. Comput. 18, 124 (2002).
http://dx.doi.org/10.1007/s003660200011
37.
37.T.-W. Tang, X. Wang, and Y. Li, J. Comput. Electron. 1, 389 (2002).
http://dx.doi.org/10.1023/A:1020764027686
38.
38.Y. Li and S.-M. Yu, Comput. Phys. Commun. 169, 309 (2005).
http://dx.doi.org/10.1016/j.cpc.2005.03.069
39.
39.B. Murugan, S. K. Saha, and R. Venkat, J. Semicond. Tech. Sci. 7, 51 (2007).
http://dx.doi.org/10.5573/JSTS.2007.7.1.051
40.
40.Y. Li, C.-Y. Chen, and Y.-Y. Chen, Int. J. of Nanotechnology 11, 1029 (2014).
http://dx.doi.org/10.1504/IJNT.2014.065128
41.
41.S. Tewari, A. Biswas, and A. Mallik, IEEE Trans. Electron Devices 60, 1584 (2013).
http://dx.doi.org/10.1109/TED.2013.2249071
42.
42.V. W. L. Chin and T. L. Tansley, Solid-State Electron. 34, 1055 (1991).
http://dx.doi.org/10.1016/0038-1101(91)90100-D
43.
43.Y. Li and C.-H. Hwang, IEEE Trans. Microw. Theory Tech. 56, 2726 (2008).
http://dx.doi.org/10.1109/TMTT.2008.2007077
44.
44.M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M. K. Hudait, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah, and R. Chau, IEDM Tech. Dig. 13.1.1 (2009).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4922190
Loading
/content/aip/journal/adva/5/6/10.1063/1.4922190
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4922190
2015-06-02
2016-12-02

Abstract

In this work, we study characteristics of 14-nm-gate InGaAs-based trigate MOSFET (metal-oxide-semiconductor field effect transistor) devices with a channel capping layer. The impacts of thickness and gallium (Ga) concentration of the channel capping layer on the device characteristic are firstly simulated and optimized by using three-dimensional quantum-mechanically corrected device simulation. Devices with InGaAs/InGaAs channels have the large driving current owing to small energy band gap and low alloy scattering at the channel surface. By simultaneously considering various physical and switching properties, a 4-nm-thick InGaAs channel capping layer can be adopted for advanced applications. Under the optimized channel parameters, we further examine the effects of channel fin angle and the work-function fluctuation (WKF) resulting from nano-sized metal grains of NiSi gate on the characteristic degradation and variability. To maintain the device characteristics and achieve the minimal variation induced by WKF, the physical findings of this study indicate a critical channel fin angle of 85o is needed for the device with an averaged grain size of NiSi below 4x4 nm2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4922190.html;jsessionid=oHXPxdpunKzvmhI6bejJ2Gjb.x-aip-live-06?itemId=/content/aip/journal/adva/5/6/10.1063/1.4922190&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4922190&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4922190'
Right1,Right2,Right3,