Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C.-S. Shin, W.-K. Park, SH. Shin, YD. Cho, DH. Ko, T.-W. Kim, D. H. Koh, HM. Kwon, R. J. W. Hill, P. Kirsch, W. Maszara, and D.-H. Kim, VLSI Symp. Tech. Dig. 1 (2014).
2.J. A. del Alamo, Nature 479, 317 (2011).
3.S.-H. Chen, W.-S. Liao, H.-C. Yang, S.-J. Wang, Y.-G. Liaw, H. Wang, H. Gu, and M.-C. Wang, Nanoscale Res. Lett. 7, 431 (2012).
4.J. P. Colinge, A. Krantib, R. Yanb, I. Ferainb, N. D. Akhavanb, P. Razavic, C.-W. Leec, R. Yud, and C. Colinge, ECS Trans. 35, 63 (2011).
5.J. H. Seo, S. Cho, and I. M. Kang, Semicond. Sci. Technol. 28, 105007 (2013).
6.I.-H. Ahn and H. Joung, Jpn. J. Appl. Phys. 49, 084303 (2010).
7.D.-H. Kim, T.-W. Kim, RH. Baek, P. D. Kirsch, W. Maszara, J. A. del Alamo, D. A. Antoniadis, M. Urteaga, B. Brar, HM. Kwon, C.-S. Shin, W.-K. Park, Y.-D. Cho, SH. Shin, DH. Ko, and K.-S. Seo, IEDM Tech. Dig. 25.2.1 (2014).
8.Y. Takano, K. Kobayashi, T. Uranishi, and S. Fuke, Jpn. J. Appl. Phys. 49, 105502 (2010).
9.H.-C. Chin, X. Gong, L. Wang, H. K. Lee, L. Shi, and Y.-C. Yeo, IEEE Electron Device Lett. 32, 146 (2011).
10.Y. Li and W.-H. Chen, J. Comput. Electron. 5, 255 (2006).
11.F. Xue, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, and J. C. Lee, Appl. Phys. Lett. 99, 033507 (2011).
12.C. Fiegna, Y. Yang, E. Sangiorgi, and A. G. O’Neill, IEEE Trans. Electron Devices 55, 233 (2008).
13.X. Xu, R. Wang, R. Huang, J. Zhuge, G. Chen, Xing Zhang, and Y. Wang, IEEE Trans. Electron Devices 55, 3246 (2008).
14.Y. Li, H. M. Chou, and J. W. Lee, IEEE Trans. Nanotechnol. 4, 510 (2005).
15.Y. Li and C.-H. Hwang, Jpn. J. Appl. Phys. 47, 2580 (2008).
16.Y. Li and C.-H. Hwang, Microelectron. Eng. 84, 2093 (2007).
17.Y. Li, C.-H. Hwang, and H.-W. Cheng, Microelectron. Eng. 86, 277 (2009).
18.Y. Li, H.-W. Chenga, and M.-H. Han, Comput. Phys. Commun. 182, 96 (2011).
19.Y. Li, C.-H. Hwang, and M.-H. Han, Nanotechnology 21, 095203 (2010).
20.H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, IEEE Trans. Electron Devices 57, 2504 (2010).
21.H. F. Dadgour and K. Endo, IEEE Trans. Electron Devices 57, 2515 (2010).
22.J. Hicks, D. Bergstrom, M. Hattendorf, J. Jopling, J. Maiz, S. Pae, C. Prasad, and J. Wiedemer, Intel Technology Journal 12, 131 (2008).
23.M. M. Hussain, M. A. Quevedo-Lopez, H. N. Alshareef, H. C. Wen, D. Larison, B. Gnade, and M. El-Bouanani, Semicond. Sci. Technol. 21, 1437 (2006).
24.H.-W. Cheng, F.-H. Li, M.-H. Han, C.-Y. Yiu, C.-H. Yu, K.-F. Lee, and Y. Li, IEDM Tech. Dig. 379 (2010).
25.J. L. Heu, Y. Setsuhara, I Shimizu, and S. Miyake, Surface and Coatings Tech. 137, 38 (2001).
26.N. Seoane, G. Indalecio, E. Comesaña, M. Aldegunde, A. J. García-Loureiro, and K. Kalna, IEEE Trans. Electron Devices 61, 466 (2014).
27.J. Mohseni and J. D. Meindl, IEEE Green Technol. Conf. 204 (2013).
28.M.-D. Ko, C.-W. Sohn, C.-K. Baek, and Y.-H. Jeong, IEEE Trans. Electron Devices 60, 2721 (2013).
29.Y. Li and C.-H. Hwang, J. Appl. Phys. 102, 084509 (2007).
30.R. E. Nahory, M. A. Pollack, W. D. Johnston, Jr., and R. L. Barns, Appl. Phys. Lett. 33, 659 (1978).
31.C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, IEEE Transactions on CAD 7, 1164V1171 (1988).
32.C. Canali, G. Majni, R. Minder, and G. Ottaviani, IEEE Trans. Electron Devices 22, 1045V1047 (1975).
33.F. Xue, A. Jiang, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, and J. Lee, IEEE Electron Device Lett. 33, 32 (2012).
34.N. M. Shrestha, Y. Li, and E. Y. Chang, Jpn. J. Appl. Phys. 53, 04EF08 (2014).
35.K. C. Sahoo, C.-I. Kuo, Y. Li, and E. Y. Chang, IEEE Trans. Electron Devices 57, 2594 (2010).
36.Y. Li, S. M. Sze, and T.-S. Chao, Eng. Comput. 18, 124 (2002).
37.T.-W. Tang, X. Wang, and Y. Li, J. Comput. Electron. 1, 389 (2002).
38.Y. Li and S.-M. Yu, Comput. Phys. Commun. 169, 309 (2005).
39.B. Murugan, S. K. Saha, and R. Venkat, J. Semicond. Tech. Sci. 7, 51 (2007).
40.Y. Li, C.-Y. Chen, and Y.-Y. Chen, Int. J. of Nanotechnology 11, 1029 (2014).
41.S. Tewari, A. Biswas, and A. Mallik, IEEE Trans. Electron Devices 60, 1584 (2013).
42.V. W. L. Chin and T. L. Tansley, Solid-State Electron. 34, 1055 (1991).
43.Y. Li and C.-H. Hwang, IEEE Trans. Microw. Theory Tech. 56, 2726 (2008).
44.M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M. K. Hudait, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah, and R. Chau, IEDM Tech. Dig. 13.1.1 (2009).

Data & Media loading...


Article metrics loading...



In this work, we study characteristics of 14-nm-gate InGaAs-based trigate MOSFET (metal-oxide-semiconductor field effect transistor) devices with a channel capping layer. The impacts of thickness and gallium (Ga) concentration of the channel capping layer on the device characteristic are firstly simulated and optimized by using three-dimensional quantum-mechanically corrected device simulation. Devices with InGaAs/InGaAs channels have the large driving current owing to small energy band gap and low alloy scattering at the channel surface. By simultaneously considering various physical and switching properties, a 4-nm-thick InGaAs channel capping layer can be adopted for advanced applications. Under the optimized channel parameters, we further examine the effects of channel fin angle and the work-function fluctuation (WKF) resulting from nano-sized metal grains of NiSi gate on the characteristic degradation and variability. To maintain the device characteristics and achieve the minimal variation induced by WKF, the physical findings of this study indicate a critical channel fin angle of 85o is needed for the device with an averaged grain size of NiSi below 4x4 nm2.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd