Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4922214
1.
1.S Wang, P Wang, C Xiao, Z Li, B Xiao, R Zhao, and T. Yang, Mater Lett 131, 358-60 (2014).
http://dx.doi.org/10.1016/j.matlet.2014.06.015
2.
2.F Pourfayaz, Y Mortazavi, a. Khodadadi, and S. Ajami, Sens Actuators, B 130, 625-9 (2008).
http://dx.doi.org/10.1016/j.snb.2007.10.018
3.
3.Y Kwon, H Kim, S Lee, IJ Chin, TY Seong, and WI. Lee, Sens Actuators, B 173, 4416 (2012).
http://dx.doi.org/10.1016/j.snb.2012.07.062
4.
4.D Zappa, E Comini, and G. Sberveglieri, Nanotechnol 24, 444008 (2013).
http://dx.doi.org/10.1088/0957-4484/24/44/444008
5.
5.JP Cheng, ZM Liao, D Shi, F Liu, and XB. Zhang, J Alloys Compd 480, 7416 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.02.041
6.
6.RC Pawar, J-W Lee, VB Patil, and CS. Lee, Sensors Actuators B Chem 187, 32330 (2013).
http://dx.doi.org/10.1016/j.snb.2012.11.100
7.
7.Y Lv, C Li, L Guo, F Wang, Y Xu, and X. Chu, Sensors Actuators B Chem 141, 858 (2009).
http://dx.doi.org/10.1016/j.snb.2009.06.033
8.
8.O Lupan, T Pauporté, L Chow, B Viana, F Pellé, and LK. Ono, Appl Surf Sci 256, 1895907 (2010).
http://dx.doi.org/10.1016/j.apsusc.2009.10.032
9.
9.R. Marotti, Sol Energy Mater Sol Cells 82, 85103 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.01.008
10.
10.HQ Bian, SY Ma, FM Li, and HB. Zhu, Superlattices Microstruct 58, 1717 (2013).
http://dx.doi.org/10.1016/j.spmi.2013.03.017
11.
11.S Choopun, N Hongsith, P Mangkorntong, and N. Mangkorntong, Phys E Low-Dimensional Syst Nanostructures 39, 536 (2007).
http://dx.doi.org/10.1016/j.physe.2006.12.053
12.
12.N. Yamazoe, Sensors Actuators B Chem 5, 719 (1991).
http://dx.doi.org/10.1016/0925-4005(91)80213-4
13.
13.N Hongsith, E Wongrat, T Kerdcharoen, and S. Choopun, Sensors Actuators B Chem 144, 6772 (2010).
http://dx.doi.org/10.1016/j.snb.2009.10.037
14.
14.C Wang, L Yin, L Zhang, D Xiang, and R. Gao, Sensors (Basel) 10, 2088106 (2010).
http://dx.doi.org/10.3390/s100302088
15.
15.I Mihailova, V Gerbreders, E Tamanis, E Sledevskis, R Viter, and P. Sarajevs, J Non Cryst Solids 377, 2126 (2013).
http://dx.doi.org/10.1016/j.jnoncrysol.2013.05.003
16.
16.O Martínez, V Hortelano, J Jiménez, JL Plaza, S De Dios, J Olvera et al., J Alloys Compd 509, 54007 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.02.063
17.
17.L Zhang and Y. Yin, Sensors Actuators B Chem 183, 1106 (2013).
http://dx.doi.org/10.1016/j.snb.2013.03.104
18.
18.Y Gui, CX Ã, Q Zhang, M Hu, J Yu, and Z. Weng, J Cryst Growth 289, 6639 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.114
19.
19.Q Xu, Q Cheng, Z Zhang, R Hong, X Chen, Z Wu et al., J Alloys Compd 590, 2605 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.12.106
20.
20.C Lin and L. Chao, ZnO. IEEE 101 (2010).
21.
21.MR Khanlary, V Vahedi, and A. Reyhani, Molecules 17, 50219 (2012).
http://dx.doi.org/10.3390/molecules17055021
22.
22.J Zhao, L Hu, Z Wang, Y Zhao, X Liang, and M. Wang, Appl Surf Sci 229, 3115 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.02.010
23.
23.RS Devan, J-H Lin, Y-J Huang, C-C Yang, SY Wu, Y Liou et al., Nanoscale 3, 433945 (2011).
http://dx.doi.org/10.1039/c1nr10694e
24.
24.S Cho and K-H. Lee, Cryst Growth Des 10, 128995 (2010).
http://dx.doi.org/10.1021/cg901314b
25.
25.RK Gupta, N Shridhar, and M. Katiyar, Mater Sci Semicond Process 5, 115 (2002).
http://dx.doi.org/10.1016/S1369-8001(02)00050-1
26.
26.NJ Simrick, JA Kilner, and A. Atkinson, Thin Solid Films 520, 285567 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.11.048
27.
27.R Kumar and M. Kumar, Indian J Pure Appl Phys 50, 32934 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4922214
Loading
/content/aip/journal/adva/5/6/10.1063/1.4922214
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4922214
2015-06-02
2016-09-25

Abstract

Metallic Zn nanodisks with hexagonal morphology were obtained onto glass substrate under vacuum thermal evaporation. A thermal characterization of Zn nanodiks showed a lower oxidation temperature than source powder Zn. Different thermal treatment on Zn nanodisks played an important role on the morphology, crystal size and surface vibrational modes of ZnO. The growth of ZnO nanoneedles started at the edge of metallic zinc hexagonal structures according with SEM images, the higher temperature the longer needles were grown. XRD diffractogram confirmed the wurtzite structure of ZnO with metallic nuclei. A wide band between 530 and 580 cm−1 of Raman scattering corresponded at surface vibrational modes not observed at higher temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4922214.html;jsessionid=_-bNYcUopQUZDAGRCI0UuCDX.x-aip-live-03?itemId=/content/aip/journal/adva/5/6/10.1063/1.4922214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4922214&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4922214'
Right1,Right2,Right3,