Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Miyao, E. Murakami, H. Etoh, K. Nakagawa, and A. Nishida, J. Cryst. Growth 111, 912 (1991).
2.M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996).
3.J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
4.Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, Scientific Reports 4, 4683 (2014).
5.J. Olivares, A. Rodriguez, J. Sangrador, T. Rodriguez, C. Ballesteros, and A. Kling, Thin Solid Films 337, 51 (1999).
6.K. Toko, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 94, 192106 (2009).
7.H. Watakabe, T. Sameshima, H. Kanno, T. Sadoh, and M. Miyao, J. Appl. Phys. 95, 6457 (2004).
8.W. Yeh, H. Chen, H. Huang, C. Hsiao, and J. Jeng, Appl. Phys. Lett. 93, 094103 (2008).
9.K. Toko, R. Numata, N. Oya, N. Fukata, N. Usami, and T. Suemasu, Appl. Phys. Lett. 104, 022106 (2014).
10.J.-H. Park, T. Suzuki, M. Kurosawa, M. Miyao, and T. Sadoh, Appl. Phys. Lett. 103, 082102 (2013).
11.Y. Liu, M. D. Deal, and J. D. Plummer, Appl. Phys. Lett. 84, 2563 (2004).
12.M. Miyao, T. Tanaka, K. Toko, and M. Tanaka, Appl. Phys. Express 2, 045503 (2009).
13.K. Toko, Y. Ohta, T. Tanaka, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 99, 032103 (2011).
14.M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 100, 172107 (2012).
15.X. Bai, C.-Y. Chen, P. B. Griffin, and J. D. Plummer, Appl. Phys. Lett. 104, 052104 (2014).
16.T. Hosoi, Y. Suzuki, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 105, 173502 (2014).
17.R. Matsumura, R. Kato, Y. Tojo, M. Kurosawa, T. Sadoh, and M. Miyao, ECS Solid State Lett. 3, P61 (2014).
18.R. Matsumura, Y. Tojo, M. Kurosawa, T. Sadoh, I. Mizushima, and M. Miyao, Appl. Phys. Lett. 101, 241904 (2012).
19.R. Matsumura, R. Kato, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 105, 102106 (2014).
20.T. B. Massalski, in Binary alloy phase diagrams, edited by J. L. Murray, L. H. Bennet, and H. Baker (American Society for Metals, Ohio, 1986).
21.E. Scheil, Z. Metallk. 34, 70 (1942).

Data & Media loading...


Article metrics loading...



Formation of large-grain (≥30 μm) Ge crystals on insulating substrates is strongly desired to achieve high-speed thin-film transistors. For this purpose, we propose the methods of Sn-doping into amorphous-Ge combined with rapid-thermal-annealing (RTA) in the solid-liquid coexisting temperature region for the Ge-Sn alloy system. The densities of micro-crystal-nuclei formed in this temperature region become low by tuning the RTA temperature close to the liquidus curve, which enhances the lateral growth of GeSn. Thanks to the very small segregation coefficient of Sn, almost all Sn atoms segregate toward edges of the stripes during growth. Agglomeration of GeSn degrades the surface morphologies; however, it is significantly improved by lowering the initial Sn concentration. As a result, pure Ge with large crystal grains (∼40 μm) with smooth surface are obtained by optimizing the initial Sn concentration as low as 3 ∼ 5%. Lateral growth lengths are further increased through decreasing the number of nuclei in stripes by narrowing stripe width. In this way, high-crystallinity giant Ge crystals (∼200 μm) are obtained for the stripe width of 3 μm. This technique for formation of large-grain pure Ge crystals is very useful to realize high-performance thin-film devices on insulator.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd