Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4922267
1.
1.T. Saga, NPG Asia Materials 2, 96-102 (2010).
http://dx.doi.org/10.1038/asiamat.2010.82
2.
2.Y. S. Tsuo, P. Menna, T. H. Wang, and T. F. Ciszek, Americam Institute of Physics Conf. Proc. 462, 453 (1998).
3.
3.A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, J. Prog. Photovolt: Res. Appl. 12, 113-142 (2004).
http://dx.doi.org/10.1002/pip.533
4.
4.B. Hoex, J. J. H. Gielis, M. C. M. Van de Sanden, and W. M. M. Kessels, J. Appl. Phys 104, 113703 (2008).
http://dx.doi.org/10.1063/1.3021091
5.
5.B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. Van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 042112 (2006).
http://dx.doi.org/10.1063/1.2240736
6.
6.G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. De Wolf, and G. Beaucarne, Sol. Energy Mater. Sol. Cells 90, 3438-3443 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.04.014
7.
7.B. Hoex, J. Schmidt, P. Pohl, M. C. M. Van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 044903 (2008).
http://dx.doi.org/10.1063/1.2963707
8.
8.K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B: Condens. Matter Mater. Phys. 68, 085110 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085110
9.
9. Vandana, N. Batra, J. Gope, R. Singh, J. Panigrahi, S. Tyagi, P. Pathi, S. Srivastava, CMS Rauthan, and P. Singh, Phys. Chem. Chem. Physs. 16, 21804 (2014).
http://dx.doi.org/10.1039/C4CP03430A
10.
10.N. Batra, Vandana, S. Kumar, M. Sharma, S Srivastava, P. Sharma, and P. Singh, Sol. Energy Mater. Sol. Cells 100, 43 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.04.028
11.
11.H. Angermann, W. Henrion, A. Roseler, and M. Rebien, Materials Science and Engineering B73, 178-183 (2000).
http://dx.doi.org/10.1016/S0921-5107(99)00457-2
12.
12.M. J. Kerr and A. Cuevas, Semiconductor Science and Technology 17, 35-38 (2002).
http://dx.doi.org/10.1088/0268-1242/17/1/306
13.
13.G. Dingemans and W. M. M. Kessels, J. vac. Sci. Technol. A. 30, 040802 (2012).
http://dx.doi.org/10.1116/1.4728205
14.
14.S. Miyazaki, J. Vac. Sci. Technol. B 19, 2212 (2001).
http://dx.doi.org/10.1116/1.1418405
15.
15.K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757-2776 (1996).
http://dx.doi.org/10.1557/JMR.1996.0350
16.
16.J. Robertson, J. Vac. Sci. Technol. B 18, 1785-1791 (2000).
http://dx.doi.org/10.1116/1.591472
17.
17.M. Ishida, K. Sawada, S. Yamaguchi, T. Nakamura, and T. Suzaki, Appl. Phys. Lett. 55, 556 (1989).
http://dx.doi.org/10.1063/1.102434
18.
18.P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, Appl. Phys. Lett. 95, 151502 (2009).
http://dx.doi.org/10.1063/1.3250157
19.
19.S. Miyajima, J. Irikawa, A. Yamada, and M. Konagai, Appl. Phys. Express 3, 012301 (2010).
http://dx.doi.org/10.1143/APEX.3.012301
20.
20.J. Irikawa, S. Miyajima, S. Kida, T. Watahiki, and M. Konagai, Jpn. J. Appl. Phys. 50, 012301 (2011).
http://dx.doi.org/10.7567/JJAP.50.012301
21.
21.C. Cibert, H. Hidalgo, C. Champeaux, P. Tristant, C. Tixier, J Desmaison, and A. Catherinot, Thin Solid Films 516, 1290-1296 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.05.064
22.
22.M. T. Seman, D. N. Richards, P. Rowlette, and C. A. Wolden, Chem. Vap. Deposition 14, 296-302 (2008).
http://dx.doi.org/10.1002/cvde.200806701
23.
23.T. T. Li and A. Cuevas, Physica Status Solidi: Rapid Res. Lett. 3, 160-162 (2009).
http://dx.doi.org/10.1002/pssr.200903140
24.
24.G. Seguini, E. Cianci, C. Wiemer, D. Saynova, and J. A. M. Van Roosmalen, Appl. Phys. Lett. 102, 131603 (2013).
http://dx.doi.org/10.1063/1.4800541
25.
25.S. M. George, Chem. Rev. 110, 111-131 (2010).
http://dx.doi.org/10.1021/cr900056b
26.
26.M. Li, H.-S. Shin, K.-S. Jeong, S.-K. Oh, H. Lee, K. Han, G.-W. Lee, and H.-D. Lee, Journal of Semiconductor Technology and Science 14, 53 (2014).
http://dx.doi.org/10.5573/JSTS.2014.14.1.053
27.
27.A. Dillon, A. Ott, J. Way, and S. George, Surface Science 322, 230-242 (1995).
http://dx.doi.org/10.1016/0039-6028(95)90033-0
28.
28.M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater. 16, 639-645 (2004).
http://dx.doi.org/10.1021/cm0304546
29.
29.R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
http://dx.doi.org/10.1063/1.1940727
30.
30.K. Kukli, M. Ritala, M. Leskela, and Jokinen, J. J. Vac. Sci. Technol. A. 15, 2214 (1997).
http://dx.doi.org/10.1116/1.580536
31.
31.A. W. Stephens and M. A. Green, Sol. Energy Mater. Sol. Cells 45, 255-265 (1997).
http://dx.doi.org/10.1016/S0927-0248(96)00061-X
32.
32.J. Brody, A. Rohatgi, and A. Ristow, Sol. Energy Mater. Sol. Cells 77, 293-301 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00350-1
33.
33.G. Dingemans, M. C. M. Van de Sanden, and W. M. M. Kessels, Electrochem. Solid-State Lett. 13, H76-H79 (2010).
http://dx.doi.org/10.1149/1.3276040
34.
34.G. Dingemans, R. Seguin, P. Engelhart, M. C. M. Van de Sanden, and W. M. M. Kessels, Phys. Status Solidi RRL 4, 10-12 (2010).
http://dx.doi.org/10.1002/pssr.200903334
35.
35.A. Richter, J. Benick, M. Hermle, and S. W. Glunz, Phys. Status Solidi RRL 5, 202-204 (2011).
http://dx.doi.org/10.1002/pssr.201105188
36.
36.J. M. Rafi, M. Zabala, O. Beldarrain, and F. Campabadal, J. Electrochem. Soc. 158, G108-G114 (2011).
http://dx.doi.org/10.1149/1.3559458
37.
37.J. Benick, A. Richter, T. T. T. A. Li, N. E. Grant, K. R. McIntosh, Y. Ren, K. J. Weber, M. Hermle, and S. W. Glunz, in Proc. 35th IEEE PVSC Honolulu, Hawaii (2010).
38.
38.D. Schuldis, A. Richter, J. Benick, and M. Hermle, in 27th EUPVSEC Frankfurt, Germany (2012).
39.
39.L. Favaro, A. Boumaza, P. Roy, J. Ledion, G. Sattonnay, J. B. Brubach, A. M. Huntz, and R. Tetot, J. Solid State Chem. 183, 901-908 (2010).
http://dx.doi.org/10.1016/j.jssc.2010.02.010
40.
40.J. M. Reyes, B. M. P. Ramos, Z. Carlos Islas, W. C. Arriaga, P. R. Quintero, and A. T. Jacome, J. Electrochem. Soc. 160, B201B206 (2013).
http://dx.doi.org/10.1149/2.060310jes
41.
41.R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, J. Electrochem. Soc. 153, C701-C706 (2006).
http://dx.doi.org/10.1149/1.2239258
42.
42.Z. Katz-Tsameret and A. Raveh, J. Vac. Sci. Technol. A. 13, 1121-1127 (1995).
http://dx.doi.org/10.1116/1.579597
43.
43.M. Skotak, Z. Karpinski, W. Juszczyk, J. Pielaszeka, L. Kepinski, D. V. Kazachkin, V. I. Kovalchuk, and J. L. d’Itri, Journal of Catalysis 227, 11-25 (2004).
http://dx.doi.org/10.1016/j.jcat.2004.06.007
44.
44.D. K. Schroder, Semiconductor material and device characterization, 3rd ed. (Wiley-Interscience, Hoboken, NJ, 2006).
45.
45.G. Dingemans, N. M. Terlindena, D. Pierreuxb, H. B. Profijta, M. C. M. Van de Sanden, and W. M. M. Kessels, Electrochem. Solid-State Lett. 14, H1-H4 (2011).
http://dx.doi.org/10.1149/1.3501970
46.
46.J. Koo, S. Kim, S. Jeon, and H. Jeon, Journal of the Korean Physical Society 48, 131-136 (2006).
47.
47.J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida, and D. Schmeißer, Beilstein J. Nanotechnol. 4, 732-742 (2013).
http://dx.doi.org/10.3762/bjnano.4.83
48.
48.B. Shin, J. R. Weber, R. D. Long, P. K. Hurley, C. G. Van de Walle, and P. C. McIntyre, Appl. Phys. Lett. 96, 152908 (2010).
http://dx.doi.org/10.1063/1.3399776
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4922267
Loading
/content/aip/journal/adva/5/6/10.1063/1.4922267
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4922267
2015-06-05
2016-10-01

Abstract

The effect of deposition temperature (T dep ) and subsequent annealing time (tanl) of atomic layer deposited aluminum oxide (Al 2O3) films on silicon surface passivation (in terms of surface recombination velocity, SRV) is investigated. The pristine samples (as-deposited) show presence of positive fixed charges, QF. The interface defect density (Dit) decreases with increase in T dep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s) is realized for T dep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4922267.html;jsessionid=QsE7avEhljUhdsorqAUdTNrC.x-aip-live-02?itemId=/content/aip/journal/adva/5/6/10.1063/1.4922267&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4922267&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4922267'
Right1,Right2,Right3,