Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4922329
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 8, 197 (2005).
http://dx.doi.org/10.1038/nature04233
2.
2.M. I. Katsnelson, K. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).
http://dx.doi.org/10.1038/nphys384
3.
3.D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Science 324, 924 (2009).
http://dx.doi.org/10.1126/science.1171810
4.
4.L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, Nature 467, 305 (2010).
http://dx.doi.org/10.1038/nature09405
5.
5.Z. Y. Zhang, J. Xie, D. Z. Yang, Y. H. Wang, D. S. Xue, and M. S. Si, Appl. Phys. Express 8, 055201 (2015).
http://dx.doi.org/10.7567/APEX.8.055201
6.
6.J. Han, J. Xie, Z. Y. Zhang, D. Z. Yang, M. S. Si, and D. S. Xue, Appl. Phys. Express 8, 041801 (2015).
http://dx.doi.org/10.7567/APEX.8.041801
7.
7.C. Kamal and M. Ezawa, Phys. Rev. B 91, 085423 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.085423
8.
8.V. Barone, O. Hod, and G. E. Scuseria, Nano Lett. 6, 2748 (2006).
http://dx.doi.org/10.1021/nl0617033
9.
9.M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
10.
10.J. Xie, M. S. Si, D. Z. Yang, Z. Y. Zhang, and D. S. Xue, J. Appl. Phys. 1165, 073704 (2014).
http://dx.doi.org/10.1063/1.4893589
11.
11.X. Han, H. M. Stewart, S. A. Shevlin, C. R. A. Catlow, and Z. X. Guo, Nano Lett. 14, 4607 (2014).
http://dx.doi.org/10.1021/nl501658d
12.
12.A. Ramasubramaniam and A. R. Muniz, Phys. Rev. B 90, 085424 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.085424
13.
13.V. Tran and L. Yang, Phys. Rev. B 89, 245407 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.245407
14.
14.L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Nat. Nanotech. 3, 397 (2008).
http://dx.doi.org/10.1038/nnano.2008.149
15.
15.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
16.
16.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
17.
17.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
19.
19.A. D. Yoffe, Adv. Phys. 42, 173 (1993).
http://dx.doi.org/10.1080/00018739300101484
20.
20.J. W. Son, M. L. Cohen, and G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
21.
21.K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 102, 256405 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.256405
22.
22.T. Cao, J. Feng, J. Shi, and E. Wang, Nat. Commun. 3, 887 (2012).
http://dx.doi.org/10.1038/ncomms1882
23.
23.S. F. Wu, J. S. Ross, G. B. Liu, G. Aivazian, A. Jones, Z. Fei, W. Zhu, D. Xiao, W. Yao, D. Cobden, and X. Xu, Nat. Phys. 9, 149 (2013).
http://dx.doi.org/10.1038/nphys2524
24.
24.Z. Y. Zhang, M. S. Si, Y. H. Wang, X. P. Gao, D. Sung, S. Hong, and J. He, J. Chem. Phys. 140, 174707 (2014).
http://dx.doi.org/10.1063/1.4873406
25.
25.X. Peng and Q. Wei, Appl. Phys. Lett. 104, 251915 (2014).
http://dx.doi.org/10.1063/1.4885215
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4922329
Loading
/content/aip/journal/adva/5/6/10.1063/1.4922329
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4922329
2015-06-04
2016-12-09

Abstract

Orthorhombic arsenene was recently predicted as an indirect bandgap semiconductor. Here, we demonstrate that nanostructuring arsenene into nanoribbons successfully transform the bandgap to be direct. It is found that direct bandgaps hold for narrow armchair but wide zigzag nanoribbons, which is dominated by the competition between the in-plane and out-of-plane bondings. Moreover, straining the nanoribbons also induces a direct bandgap and simultaneously modulates effectively the transport property. The gap energy is largely enhanced by applying tensile strains to the armchair structures. In the zigzag ones, a tensile strain makes the effective mass of holes much higher while a compressive strain cause it much lower than that of electrons. Our results are crucial to understand and engineer the electronic properties of two dimensional materials beyond the planar ones like graphene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4922329.html;jsessionid=N3-YwOO3Q6ycL-zJntWp_IjY.x-aip-live-06?itemId=/content/aip/journal/adva/5/6/10.1063/1.4922329&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4922329&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4922329'
Right1,Right2,Right3,