Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4922438
1.
1.S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature. 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
2.
2.T. Chiba, Y. J. Pu, R. Miyazaki, K. I. Nakayama, H. Sasabe, and J. Kido, Org. Electron. 12, 710 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.01.022
3.
3.Q. Y. Bao, J. P. Yang, Y. Xiao, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, J. Mater. Chem. 21, 17476 (2011).
http://dx.doi.org/10.1039/c1jm12515j
4.
4.C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
5.
5.E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, Adv. Mater. 19, 197 (2007).
http://dx.doi.org/10.1002/adma.200602174
6.
6.S. O. Jeon, K. S. Yool, C. W. Joo, and J. Y. Lee, Org. Electron. 11, 881 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.02.003
7.
7.S. Zhuo, M. Shao, L. Cheng, R. Que, D. D. Ma, and S. T. Lee, Appl. Phys. Lett. 96, 103108 (2010).
http://dx.doi.org/10.1063/1.3358136
8.
8.A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, Appl. Phys. Lett. 96, 043307 (2010).
http://dx.doi.org/10.1063/1.3271773
9.
9.H. Park, D. Vak, Y. Noh, B. Lim, and D. Kim, Appl. Phys. Lett. 90, 161107 (2007).
http://dx.doi.org/10.1063/1.2721134
10.
10.K. Y. Yang, K. C. Choi, and C. W. Ahn, Appl. Phys. Lett. 94, 173301 (2009).
http://dx.doi.org/10.1063/1.3125249
11.
11.H. Mertens, A. F. Koenderink, and A. Polman, Phys. Rev. B 76, 115123 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.115123
12.
12.C.Y. Cho, S.J. Lee, and J.H. Song, Appl. Phys. Lett. 98, 051106 (2011).
http://dx.doi.org/10.1063/1.3552968
13.
13.F. Liu and J. M. Nunzi, Org. Electron. 13, 162313632 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.04.027
14.
14.Y. Xiao, J. P. Yang, and P. P. Cheng, Appl. Phys. Lett. 100, 013308 (2012).
http://dx.doi.org/10.1063/1.3675970
15.
15.K. C. Tien, M. S. Lin, and Y.-H. Lin, Org. Electron. 11, 397 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.11.018
16.
16.A. Kumar, R. Srivastava, D. S. Mehta, and M. N. Kamalasanan, Org. Electron. 13, 1750 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.018
17.
17.F. Liu and J. Nunzi, Org. Electron. 13, 1623 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.04.027
18.
18.A. Kumar, R. Srivastav, P. Tyag, D. S. Mehta, and M. N. Kamalasanan, Org. Electron. 13, 159 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.10.008
19.
19.Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, Journal of Nanomaterials 10, 1155 (2013).
20.
20.Y. C. Chen, C. Y. Gao, K. L. Chen, and C. J. Huang, Applied Surface Science 295, 266 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.01.031
21.
21.Y. Xiao, J. P. Yang, and P. P. Cheng, Appl. Phys. Lett. 100, 013308 (2012).
http://dx.doi.org/10.1063/1.3675970
22.
22.F. Liu and J. Nunzi, Proc. of SPIE. 2, 8424 (2012).
23.
23.K. Xu, Y. Li, and W. Zhang, Current Applied Physics. 14, 53 (2014).
http://dx.doi.org/10.1016/j.cap.2013.09.014
24.
24.Z. Y. Wang, Z. J. Chen, Z. H. Lan, X. F. Zhai, W. M. Du, and Q. H. Gong, Appl. Phys. Lett. 90, 151119 (2007).
http://dx.doi.org/10.1063/1.2722231
25.
25.K. Y. Yang, K. C. Choi, and C. W. Ahn, Appl. Phys. Lett. 94, 173301 (2009).
http://dx.doi.org/10.1063/1.3125249
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4922438
Loading
/content/aip/journal/adva/5/6/10.1063/1.4922438
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4922438
2015-06-08
2016-12-10

Abstract

In this manuscript we investigated the influence of Au nanoparticles on electrical and electroluminescent (EL) performances in organic light-emitting diodes (OLEDs) via doping as-synthesized Au nanorods (NRs) or nanocubes (NCs) into hole transport layer (HTL). Through accurately controlling the distance between the Au NRs and the emitting layer, altering the guest emitter’s lifetime, and replacing Au NRs with Au NCs to satisfy a better spectrum overlap with the emission guest, we got a conclusion that doping Au NRs or NCs into HTL has no significant influence on the device’s electrical and EL performances, although we observed an increase in the spontaneous emission rate in a fluorescent material by the exciton-surface plasmon-coupling. Our results suggest that a further research on emission mechanism in surface plasmon-enhanced OLEDs is still in process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4922438.html;jsessionid=-FdMRBvEn67-iMhvpCc2EtMA.x-aip-live-03?itemId=/content/aip/journal/adva/5/6/10.1063/1.4922438&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4922438&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4922438'
Right1,Right2,Right3,