Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science 311, 1270 (2006).
2.M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. Wu, Nature 451, 545 (2008).
3.M. Suewattana and D. J. Singh, Phys. Rev. B. 73, 224105 (2006).
4.B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, Phys. Rev. B. 77, 174106 (2008).
5.X. Chen, Z. G. Hu, Z. H. Duan, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, J. Appl. Phys. 114, 043507 (2013).
6.N. Luo, Y. Li, Z. Xia, and Q. Li, CrystEngComm. 14, 4547 (2012).
7.B. Noheda, D. E. Cox, G. Shirance, J. A. Gonzalo, L. E. Cross, and S-E. Park, Appl. Phys. Lett. 74, 2059 (1999).
8.B. Noheda, D. E. Cox, G. Shirance, R. Guo, B. Jones, and L. E. Cross, Phys. Rev. B. 63, 014103 (2001).
9.B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971).
10.L. L. Wei, A. Y. Liu, C. C. Jin, F. T. Lin, P. Wang, Q. R. Yao, C. Y. Tian, Y. Li, J. Tang, H. L. Han, W. Z. Shi, and C. B. Jing, J. Alloys. Compd. 590, 368 (2014).
11.J. Y. Lee, J. W. Choi, M. G. Kang, S. J. Kim, T. K. Ko, and S. J. Yoon, J. Electroceram. 23, 572 (2009).
12.Z. H. Dai, Z. Xu, and X. Yao, Appl. Phys. Lett. 92, 072904 (2008).
13.L. Shebanov, M. Kusnetsov, and A. Sternberg, J. Appl. Phys. 76, 4301 (1994).
14.E. Buixaderas, M. Berta, L. Kozielski, and I. Gregora, Phase Transitions. 84, 528 (2011).
15.M. P. Thia, G. Marchb, and P. Colombanb, J. Eu. Ceramic. Soc. 25, 3335 (2005).
16.M. P. Thia, H. Hemery, P. Colombanb, and O. Lacour, in 2004 14th IEEE International Symposium on the Applications of Ferroelectrics-ISAF-04, Montreal, Canada, 23-27 August 2004. pp. 157-160.
17.G. Gouadec, P. Colomban, A. Slodczyk, and M. P. Thi, in Joint IEEE international Symposium on the Applications of Ferroelectrics, International workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy (ISAF/IWATMD/PFM), Penn State University in State College, PA, USA, 12-16 May 2014.
18.A. Slodczyk, G. Gouadec, P. Colomban, and M. P. Thi, in Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, 21-25 July 2013. pp. 356-359.
19.Y. H. Xu, Ferroelectrics and Piezoelectric Materials (Science Press, 1978).
20.X. Zeng, X. Y. He, W. X. Cheng, X. S. Zheng, and P. S. Qiu, J. Alloys. Compd. 485, 843 (2009).
21.M. R. Suchomel and P. K. Davies, Appl. Phys. Lett. 86, 262905 (2005).
22.J. Kelly, M. Leonard, C. Tantigate, and A. Safari, J. Am. Ceram. Soc. 80, 957 (1997).
23.A. Kumar, I. Rivera, and R. S. Katiyar, J. Raman Spectrosc. 40, 459 (2009).
24.M. Deluca, H. Fukumura, N. Tonari, C. Capiani, N. Hasuike, K. Kisoda, C. Galassi, and H. Harima, J. Raman Spectrosc. 42, 488 (2011).
25.G. Burns and B. A. Scott, Phys. Rev. B. 7, 3088 (1973).
26.E. Buixaderas, V. Bovtun, S. Veljko, M. Savinov, P. Kužel, I. Gregora, S. Kamba, and I. Reaney, J. Appl. Phys. 108, 104101 (2010).
27.A. Slodczyk and P. Colomban, Materials. 3, 5007 (2010).
28.M. Shen, G. G. Siu, Z. K. Xu, and W. Cao, Appl. Phys. Lett. 86, 252903 (2005).
29.M. El Marssi and H. Dammak, Solid State Commun. 142, 487 (2007).
30.J. Frantti, V. Lantto, and J. Lappalainen, J. Appl. Phys. 79, 1065 (1996).
31.M. Tyunina, A. Dejneka, D. Chvostova, J. Levoska, M. Plekh, and L. Jastrabik, Phys. Rev. B. 86, 224105 (2012).

Data & Media loading...


Article metrics loading...



The phase transitions of Pb 1−x Sr x (Al1/3Nb2/3)0.1(Zr0.52Ti0.48)0.9O3 (Sr-modified PAN-PZT) ceramics with Sr compositions of x = 2%, 5%, 10% and 15% have been investigated using X-ray diffraction (XRD), temperature dependent dielectric permittivity and Raman scattering. The XRD analysis show that the phase transition occurs between Sr composition of 5% and 10%. Based on the broad dielectric peaks at 100 Hz, the diffused phase transition from tetragonal (T) to cubic (C) structure shifts to lower temperature with increasing Sr composition. The dramatic changes of wavenumber and full width at half-maximum (FWHM) for E(TO4)′ softing mode can be observed at morphotropic phase boundary (MPB). Moreover, the MPB characteristic shows a wider and lower trend of temperature region with increasing Sr composition. It could be ascribed to the diminishment of the energy barrier and increment of A-cation entropy. Therefore, the Sr-modified PAN-PZT ceramics unambiguously undergo two successive structural transitions (rhombohedral-tetragonal-cubic phase) with temperature from 80 to 750 K. Correspondingly, the phase diagram of Sr-modified PAN-PZT ceramics can be well depicted.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd