Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Tanaka, S. Ohya, and P.N. Hai, Appl. Phys. Rev. 1, 011102 (2014).
2.T. Birol, N.A. Benedek, H. Das, A.L. Wysocki, A.T. Mulder, B.M. Abbett, E.H. Smith, S. Ghosh, and C.J. Fennie, Current Opinion in Solid State and Materials Science 16, 227 (2012).
3.W. H. Butler, A. Bandyopadhyay, and R. Srinivasan, J. Appl. Phys. 93, 7882 (2003).
4.P. Liao, M. C. Toroker, and E.A. Carter, Nano Lett. 11, 1775 (2011).
5.N. Naresh and R. N Bhowmik, AIP Advances 1, 032121 (2011).
6.R. N. Bhowmik, G. Vijayasri, and R. Ranganathan, J. Appl. Phys. 116, 123905 (2014).
7.A.G. Lone and R.N. Bhowmik, J. Magn. Magn. Mater. 379, 244 (2015).
8.B. Zhao, T. C. Kaspar, T.C. Droubay, J. McCloy, M.E. Bowden, V. Shutthanandan, S. M. Heald, and S. A. Chambers, Phys. Rev. B 84, 245325 (2011).
9.A. K. Shwarsctein, M. N. Huda, A. Walsh, Y. Yan, G. D. Stucky, Y. S. Hu, M. M. Al-Jassim, and E. W. McFarland, J. Chem. Mater. 22, 510 (2010).
10.J. C. Papaioannoua, G. S. Patermarakisb, and H. S. Karayianni, J. Phys. Chem. Solids 66, 839 (2005).
11.A.G. Lone and R.N. Bhowmik, AIP Advances (accepted, 2015).
12.L. Machala, J. Tucek, and R. Zboril, J. Chem. Mater. 23, 3255 (2011).
13.P. Chureemart, R. Cuadrado, I. D’Amico, and R. W. Chantrell, Phys. Rev. B 87, 195310 (2013).
14.J. Ghosh, T. Windbacher, V. Sverdlov, and S. Selberherr, Solid-State Electronics 101, 116 (2014).
15.Matthew R. Sears and Wayne M. Saslow, Phys. Rev. B 85, 014404 (2012).
16.G. E. Pike and C. H. Seager, J. App. Phys. 50, 3414 (1979).
17.M.P. Delmo, S. Yamamoto, S. Kasai, T. Ono, and K. Kobayashi, Nature 457, 1112 (2009).
18.S. Takahashi and S. Maekawa, Sci. Technol. Adv. Mater. 9, 014105 (2008).
19.Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L. W. Martin, Y.-H. Chu, J. F. Scott, and R. Ramesh, Phys. Rev. Lett. 108, 067203 (2012).
20.H. Yang, W. Mi, H. Bai, and Y. Cheng, RSC Adv. 2, 10708 (2012).
21.X. Wu, Z. Xu, Z. Yu, T. Zhang, F. Zhao, T. Sun, Z. Ma, Z. Li, and S. Wang, J. Phys. D: Appl. Phys. 48, 115101 (2015).
22.J.C. Knott, D.C. Pond, and R.R. Lewis, PMC Phys. B 1, 2 (2008).
23.A. G. Volkov and A. A. Povzner, Physics of the Solid State 54, 2351 (2012).
24.C. W. Chong, D. Hsu, W. C. Chen, C. C. Li, J. G. Lin, L. C. Chen, K. H. Chen, and Y. F. Chen, J. Phys. Chem. C 116, 21132 (2012).
25.G.-X. Miao, M. Mu¨ller, and J.S. Moodera, Phys. Rev. Lett. 102, 076601 (2009);
25.G.-X. Miao, M. Mu¨ller, and J.S. Moodera, Phys. Chem. Chem. Phys. 17, 751 (2015).
26.K.J. Yoon, M.H. Lee, G.H. Kim, S.J. Song, J.Y. Seok, S. Han, J.H. Yoon, K.M. Kim, and C.S. Hwang, Nanotechnology 23, 185202 (2012).
27.B. Kundys, A. Maignan, C. Martin, N. Nguyen, and C. Simon, Appl. Phys. Lett. 92, 112905 (2008).
28.T. Wu and J. F. Mitchell, Appl. Phys. Lett. 86, 252505 (2005).
29.Y. S. Xiao, X. P. Zhang, and Y. G. Zhao, Appl. Phys. Lett. 90, 013509 (2007).
30.K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, Appl. Phys. Lett. 91, 012907 (2007).
31.H. Beneking, High Speed Semiconductor Devices: Circuit aspects and fundamental behaviour (Springer, 1994), pp. 114117.
32.Y. S. Xiao, X. P. Zhang, and Y. G. Zhao, Appl. Phys. Lett. 90, 013509 (2007).
33.V. Zayets, Phys. Rev. B 86, 174415 (2012).
34.B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, and B. Baretzky, Phys. Rev. B 79, 205206 (2009).
35.S. G. Protasova, B. B. Straumal, A. A. Mazilkin, S. V. Stakhanova, P. B. Straumal, and B. Baretzky, J. Mater. Sci. 49, 4490 (2014).
36.X.M. Shen, D.G. Zhao, Z.S. Liu, Z.F. Hu, H. Yang, and J.W. Liang, Solid-State Electronics 49, 847 (2005).
37.K. M. Rosso, D. M. A. Smith, and M. Dupuis, J. Chem. Phys. 118, 6455 (2003);
37.N. Iordanova, M. Dupuis, and K. M. Rosso, J. Chem. Phys. 122, 144305 (2005).
38.S. Choi, C. Lefèvre, F. Roulland, C. Me´ny, N. Viart, B. To, D.E. Shafer, R. Shin, J. Lee, and W. Jo, J. Vacuum Science and Tech. B 30, 041204 (2012).

Data & Media loading...


Article metrics loading...



We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd