Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, Rev. Mod. Phys. 84, 777 (2012).
2.R. Valivarthi, I. Lucio-Martinez, A. Rubenok, P. Chan, F. Marsili, V. B. Verma, M. D. Shaw, J. A. Stern, J. A. Slater, D. Oblak, S. W. Nam, and W. Tittel, Opt. Exp. 22, 24497 (2014).
3.W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, Nature 491, 426 (2012).
4.C. Y. Lu and J. W. Pan, Nat. Photon. 8, 174 (2014).
5.Y. J. Wei, Y. M. He, M. C. Chen, Y. N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan, Nano Lett. 14, 6515 (2014).
6.M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, Nat. Photon. 7, 540 (2013).
7.E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).
8.R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, Opt. Exp. 13, 10846 (2005).
9.F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nat. Photon. 7, 210 (2013).
10.D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, Opt. Exp. 21, 1440 (2013).
11.S. Miki, T. Yamashita, H. Terai, and Z. Wang, Opt. Exp. 21, 10208 (2013).
12.W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, Nat. Commun. 3, 1325 (2012).
13.G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Muller, M. Bichler, R. Gross, and J. J. Finley, Sci. Rep. 3 (2013).
14.D. K. Liu, S. Miki, T. Yamashita, L. X. You, Z. Wang, and H. Terai, Opt. Exp. 22, 21167 (2014).
15.B. Baek, J. A. Stern, and S. W. Nam, Appl. Phys. Lett. 95, 191110 (2009).
16.A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, Appl. Phys. Lett. 97, 151108 (2010).
17. The refractive indices used in our simulation were n_Ta2O5 = 2.26, n_SiO2 = 1.47, n_NbN = 4.81-4.77*i, n_Si = 3.46, measured by using an ellipsometry at 940 nm.
18. We fixed the optical input power and fed it into a variable attenuator (Agilent 81570A, operating at 1200 nm). We measured the output power as function of attenuation with a calibrated high-sensitivity InGaAs power sensor (Agilent 81634B) at 940 nm. The output power showed a good linearity (slope ∼ -1.08, standard error ∼ 1.4×10−4) with attenuation in dB.
19.A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, J. Appl. Phys. 113, 144511 (2013).
20. For Φ = 18, 15, 10, and 5 μm, Lk = 1288, 800, 345, 82 nH, respectively, measured by using a network analyzer.
21.L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, AIP Adv. 3 (2013).
22.M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, J. Appl. Phys. 108, 014507 (2010).
23.X. Y. Yang, H. Li, W. J. Zhang, L. X. You, L. Zhang, X. Y. Liu, Z. Wang, W. Peng, X. M. Xie, and M. H. Jiang, Opt. Exp. 22, 16267 (2014).
24.X. Y. Yang, H. Li, L. X. You, W. J. Zhang, L. Zhang, Z. Wang, and X. M. Xie, Appl. Opt. 54, 96 (2015).
25.T. Yamashita, S. Miki, H. Terai, and Z. Wang, Opt. Exp. 21, 27177 (2013).
26.J. K. W. Yang, A. J. Kerman, E. A. Dauler, B. Cord, V. Anant, R. J. Molnar, and K. K. Berggren, IEEE Trans. on Appl. Supercond. 19 (2009).
27.H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, Appl. Phys. Lett. 100, 182602 (2012).
28.M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, Supercond. Sci. Technol. 22, 055006 (2009).
29.J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, M. R. Kristine, and K. K. Berggren, IEEE Trans. on Appl. Supercond. 17, 5 (2007).

Data & Media loading...


Article metrics loading...



We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated onto a Si substrate with a distributed Bragg reflector for enhancing the optical absorptance. We demonstrate that, via the design of a low filling factor (1/3) and active area (Φ = 10 μm), the system reaches a detection efficiency of ∼60% with a dark count rate of 10 Hz, a recovery time <12 ns, and a timing jitter of ∼50 ps.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd