Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Weisheit et al., “Electric field-induced modification of magnetism in thin-film ferromagnets,” Science 315, 34951 (2007).
2.T. Maruyama et al., “Large voltage-induced magnetic anisotropy change in a few atomic layers of iron,”4, 158–161 (2009).
3.Y. Shiota et al., “Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses,” Nat. Mater. 11, 3943 (2012).
4.S. Kanai et al., “Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Appl. Phys. Lett. 101, 122403 (2012).
5.T. Nozaki et al., “Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer,” Nat. Phys. 8, 492497 (2012).
6.W. G. Wang and C. L. Chien, “Voltage-induced switching in magnetic tunnel junctions with perpendicular magnetic anisotropy,” J. Phys. D. Appl. Phys. 46, 074004 (2013).
7.F. Bonell et al., “Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films,” Appl. Phys. Lett. 98, 232510 (2011).
8.K. Nakamura, R. Shimabukuro, T. Akiyama, T. Ito, and a. Freeman, “Origin of electric-field-induced modification of magnetocrystalline anisotropy at Fe(001) surfaces: Mechanism of dipole formation from first principles,” Phys. Rev. B 80, 172402 (2009).
9.K. H. He, J. S. Chen, and Y. P. Feng, “First principles study of the electric field effect on magnetization and magnetic anisotropy of FeCo/MgO(001) thin film,” Appl. Phys. Lett. 99, 072503 (2011).
10.D. Chiba and T. Ono, “Control of magnetism in Co by an electric field,” J. Phys. D. Appl. Phys. 46, 213001 (2013).
11.L. Herrera Diez et al., “Electric-field effect on coercivity distributions in FePt magneto-electric devices,” Appl. Phys. Lett. 102, 012409 (2013).
12.M. Endo, S. Kanai, S. Ikeda, F. Matsukura, and H. Ohno, “Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co[sub 40]Fe[sub 40]B[sub 20]/Ta structures,” Appl. Phys. Lett. 96, 212503 (2010).
13.T. Seki, M. Kohda, J. Nitta, and K. Takanashi, “Coercivity change in an FePt thin layer in a Hall device by voltage application,” Appl. Phys. Lett. 98, 212505 (2011).
14.U. Bauer, M. Przybylski, J. Kirschner, and G. S. D. Beach, “Magnetoelectric charge trap memory,” Nano Lett. 12, 143742 (2012).
15.U. Bauer, S. Emori, and G. S. D. Beach, “Voltage-controlled domain wall traps in ferromagnetic nanowires,” Nat. Nanotechnol. 8, 4116 (2013).
16.F. Bonell et al., “Reversible change in the oxidation state and magnetic circular dichroism of Fe driven by an electric field at the FeCo/MgO interface,” Appl. Phys. Lett. 102, 152401 (2013).
17.U. Bauer et al., “Magneto-ionic control of interfacial magnetism,” Nat. Mater. (2014), doi:10.1038/nmat4134
18.K. Leistner et al., “Electric-field control of magnetism by reversible surface reduction and oxidation reactions,” Phys. Rev. B 87, 224411 (2013).
19.K. Leistner et al., “Electrode processes and in situ magnetic measurements of FePt films in a LiPF6 based electrolyte,” Electrochim. Acta 81, 330337 (2012).
20.N. Tournerie, a. P. Engelhardt, F. Maroun, and P. Allongue, “Influence of the surface chemistry on the electric-field control of the magnetization of ultrathin films,” Phys. Rev. B 86, 104434 (2012).
21.C. Fowley, K. Rode, K. Oguz, H. Kurt, and J. M. D. Coey, “Electric field induced changes in the coercivity of a thin-film ferromagnet,” J. Phys. D. Appl. Phys. 44, 305001 (2011).
22.S. S. P. Parkin, “Flexible giant magnetoresistance sensors,” Appl. Phys. Lett. 69, 3092 (1996).
23.A. Bedoya-Pinto, M. Donolato, M. Gobbi, L. E. Hueso, and P. Vavassori, “Flexible spintronic devices on Kapton,” Appl. Phys. Lett. 104, 062412 (2014).
24.C.-W. Cheng, W. Feng, G. Chern, C. M. Lee, and T. Wu, “Effect of cap layer thickness on the perpendicular magnetic anisotropy in top MgO/CoFeB/Ta structures,” J. Appl. Phys. 110, 033916 (2011).
25.D. D. Lam, F. Bonell, S. Miwa, and Y. Shiota, “MgO Overlayer Thickness Dependence of Perpendicular Magnetic Anisotropy in CoFeB Thin Films,”62, 10–13 (2013).
26.M. Kim, S. Kim, J. Ko, and J. Hong, “Contribution of individual interfaces in the MgO/Co/Pd trilayer to perpendicular magnetic anisotropy upon annealing,” Appl. Phys. Lett. 106, 102404 (2015).
27.N. N. Phuoc, L. T. Hung, and C. K. Ong, “Influence of flexible substrate thickness on static and dynamic magnetic properties of FeCoB thin films,” J. Phys. D. Appl. Phys. 43, 255001 (2010).
28.S. Kanai, M. Endo, S. Ikeda, F. Matsukura, and H. Ohno, “Magnetic Anisotropy Modulation in Ta/ CoFeB/ MgO Structure by Electric Fields,” J. Phys. Conf. Ser. 266, 012092 (2011).
29.C. Bi et al., “Reversible Control of Co Magnetism by Voltage-Induced Oxidation,”267202, 1-5 (2014).
30.L. Gerhard, F. Bonell, W. Wulfhekel, and Y. Suzuki, “Influence of an electric field on the spin-reorientation transition in Ni/Cu(100),” Appl. Phys. Lett. 105, 152903 (2014).
31.M. Gueye et al., “Bending strain-tunable magnetic anisotropy in Co2FeAl Heusler thin film on Kapton®,” Appl. Phys. Lett. 105, 062409 (2014).

Data & Media loading...


Article metrics loading...



We show that perpendicularly magnetized thin films can be grown onto polyimide, a potentially flexible substrate. With polar Kerr magnetometry, we demonstrate that the coercive field of CoFeB thin film can be modulated by applying a back gate voltage. Our proposed multi-layered structure is suitable for surface-sensitive measurements of the voltage-induced change in anisotropy, and could be used to realize flexible spintronics devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd