Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett. 8, 3498 (2008).
2.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
3.H. B. Wang, T. Maiyalagan, and X. Wang, ACS Catal. 2, 781 (2012).
4.Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
5.J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, ACS Nano 3, 301 (2009).
6.H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, ACS Nano 4, 380 (2009).
7.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
8.G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su, and M. Chhowalla, Appl. Phys. Lett. 92, 233305 (2008).
9.R. T. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Z. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, T. Terrones, J. Charlier, M. H. Pan, and M. Terrones, Sci. Rep. 2, 586 (2012).
10.D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).
11.H. T. Liu, Y. Q. Liu, and D. B. Zhu, J. Mater. Chem. 21, 3335 (2011).
12.L. T. Qu, Y. Liu, J. Baek, and L. M. Dai, ACS Nano 4, 1321 (2010).
13.W. P. Ouyang, D. R. Zeng, X. Yu, F. Y. Xie, W. H. Zhang, J. Chen, J. Yan, F. J. Xie, L. Wang, H. Meng, and D. S. Yuan, Int. J. Hydrogen Energ. 39, 15996 (2014).
14.Y. Shao, S. Zhang, M. H. Engelhard, G. Li, Y. Wang, J. Liu, I. A. Aksay, and Y. Lin, J. Mater. Chem. 20, 7491 (2010).
15.C. N. Chen, W. Fan, T. Ma, and X. W. Fu, Ionics 20, 1489 (2014).
16.R. Feng, Y. Zhang, H. M. Ma, D. Wu, H. X. Fan, H. Wang, H. Li, B. Du, and Q. Wei, Electrochim. Acta 97, 105 (2013).
17.L. Jia, D. H. Wang, Y. X. Huang, A. W. Xu, and H. Q. Yu, J. Phys. Chem. C 115, 11466 (2011).
18.L. S. Zhang, X. Q. Liang, W. G. Song, and Z. Y. Wu, Phys. Chem. Chem. Phys. 12, 12055 (2010).
19.Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, J. Mater. Chem. 21, 8038 (2011).
20.D. H. Deng, X. L. Pan, L. Yu, Y. Cui, Y. P. Jiang, J. Qi, W. X. Li, Q. Fu, X. C. Ma, Q. K. Xue, G. Q. Sun, and H. X. Bao, Chem. Mater. 23, 1188 (2011).
21.K. Parvez, S. B. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. L. Feng, and K. Müllen, ACS Nano 6, 9541 (2012).
22.G. Kim, S. H. Jhi, N. Park, S. G. Louie, and M. L. Cohen, Phys. Rev. B 78, 085408 (2008).
23.D. S. Kim, S. H. Lee, S. C. Jo, and Y. C. Chung, Phys. Chem. Chem. Phys. 15, 12757 (2013).
24.Y. J. Park, G. Kim, and Y. H. Lee, Appl. Phys. Lett. 92, 083108 (2008).
25.J. P. Dodelet, Electrocatalysis in Fuel cells 9, 271 (2013).
26.J. B. Yang, D. J. Liu, N. N. Kariuki, and L. X. Chen, Chem. Commun. 3, 329 (2008).
27.A. T. Lee, J. Kang, S. H. Wei, J. K. Chang, and Y. H. Kim, Phys. Rev. B 86, 165403 (2012).
28.S. Lee, M. Lee, and Y. C. Chung, J. Appl. Phys. 113, 17B503 (2013).
29.T. Palaniselvam, H. B. Aiyappa, and S. Kurungot, J. Mater. Chem. 22, 23799 (2012).
30.D. S. Geng, Y. Chen, Y. G. Chen, Y. L. Li, R. Y. Li, X. L. Sun, S. Y. Ye, and S. Knights, Energy Environ. Sci. 4, 760 (2011).
31.B. Delley, J. Chem. Phys. 92, 508 (1990).
32.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
33.B. Delley, Phys. Rev. B 66, 155125 (2002).
34.N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, and J. Andzelm, Comput. Mater. Sci. 28, 250 (2003).
35.D. H. Lee, W. J. Lee, W. J. Lee, S. O. Kim, and Y. H. Kim, Phys. Rev. Lett. 106, 175502 (2011).
36.X. M. Ren, S. S. Zhang, D. T. Tran, and J. Read, J. Mater. Chem. 21, 10118 (2011).
37.O. C. Laoire, S. Mukerjee, K. M. Abraham, E. J. Plichta, and M. A. Hendrickson, J. Phys. Chem. C 113, 20127 (2009).
38.P. Giannozzi, R. Car, and G. Scoles, J. Chem. Phys. 118, 1003 (2003).
39.H. J. Yan, B. Xu, S. Q. Shi, and C. Y. Ouyang, J. Appl. Phys. 112, 104316 (2012).
40.Y. P. Zheng, X. Wei, M. Cho, and K. Cho, Chem. Phys. Lett. 586, 104 (2013).
41.J. Sun, Y. H. Fang, and Z. P. Liu, Phys. Chem. Chem. Phys. 16, 13733 (2014).
42.Z. Shi, H. Liu, K. Lee, E. Dy, J. Chlistunoff, M. Blair, P. Zelenay, J. Zhang, and Z.-S. Liu, J. Phys. Chem. C. 115, 16672 (2011).

Data & Media loading...


Article metrics loading...



By using first-principles calculations, we investigate the structural stability of nitrogen-doped (N-doped) graphene with graphitic-N, pyridinic-N and pyrrolic-N, and the transition metal (TM) atoms embedded into N-doped graphene. The structures and energetics of TM atoms from Sc to Ni embedded into N-doped graphene are studied. The TM atoms at NV forming a 4N-centered structure shows the strongest binding and the binding energies are more than 7 eV. Finally, we investigate the catalytic performance of N-doped graphene with and without TM embedding for O dissociation, which is a fundamental reaction in fuel cells. Compared to the pyridinic-N, the graphitic-N is more favorable to dissociate O molecules with a relatively low reaction barrier of 1.15 eV. However, the catalytic performance on pyridinic-N doped structure can be greatly improved by embedding TM atoms, and the energy barrier can be reduced to 0.61 eV with V atom embedded. Our results provide the stable structure of N-doped graphene and its potential applications in the oxygen reduction reactions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd