Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Inzelt, Conducting polymers. A new era in electrochemistry (Heidelberg: Springer-Verlag, 2008).
2.K. J. Vinoy and R. M. Jha, Radar Absorbing Materials from Theory to Design and Characterization (Boston: Kluwer Acad. Publs, 1996).
3.M. Mauro, M. R. Acocella, C. Esposito Corcione, A. Maffezzoli, and G. Guerra, “Catalytic activity of graphite-based nanofillers on cure reaction of epoxy resins,” Polymer 55, 5612-5615 (2014).
4.C. Esposito Corcione, F. Freuli, and A. Maffezzoli, “The Aspect Ratio of Epoxy Matrix Nanocomposites Reinforced With Graphene Stacks,” Polymer Engeneering and Science 53(3), 531-539 (2013).
5.C. Esposito Corcione and A. Maffezzoli, “Transport properties of graphite/epoxy composites: Thermal, permeability and dielectric characterization,” Polymer Testing 32, 880-888 (2013).
6.S. Bellucci, L. Coderoni, F. Micciulla, G. Rinaldi, and I. Sacco, “The Electrical Properties of Epoxy Resin Composites Filled with Cnts and Carbon Black,” J. Nanosci. and Nanotechnol. 11(10), 9110–17(8)(2011).
7.A. Celzard, J. F. Mareche, and G. Furdin, Prog. Mater. Sci. 50, 93 (2005).
8.French Patent CNRS N PCT/EP 92 / 023117.
9.K.V. Zakutailov, V.M. Levin, and Yu.S. Petronyuk, “High-resolution ultrasound methods: Microstructure visualization and diagnostics of elastic properties of modern materials (Review),” Inorganic Materials 46(15), 1635 (2010).
10.S. Liu, E. Guo, V.M. Levin, F. Liu, Yu.S. Petronyuk, and Qi. Zhang, “Application of pulse acoustic microscopy technique for 3D imaging bulk microstructure of carbon fiber-reinforced composites,” Ultrasonics 44(Supp. 1), e1037-1044 (2006).
11.B. Debelak and K. Lafdi, “Use of exfoliated graphite filler to enhance polymer physical properties,” Carbon 45, 1727 (2007).
12.M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS Nano 3(12), 3884 (2009).
13.I. Kranauskaite, J. Macutkevic, P. Kuzhir, N. Volynets, A. Paddubskaya, D. Bychanok, S. Maksimenko, J. Banys, S. Bistarelli, A. Cataldo, F. Micciulla, S. Bellucci, V. Fierro, and A. Celzard, “Dielectric properties of graphite-based epoxy composites,” Phys. Status Solidi A 1-11 (2014).
14.I. Kranauskaite, J. Macutkevic, J. Banys, N. Volynets, A. Paddubskaya, P. Kuzhir, S. Maksimenko, V. Fierro, A. Celzard, S. Bistarelli, A. Cataldo, F. Micciulla, and S. Bellucci, Broadband dielectric spectroscopy of composites filled with various carbon materials, accepted IEEE Trans Microwave (after NEMO conf, S.Bellucci), 2015.
15.A. Celzard, C. Deleuze, M. Dufort, G. Furdin, J. F. Marêché, and E. McRae, Phys. Rev. B 53, 6209 (1996).
16.A. Celzard, J. F. Marêché, and F. J. Payot, F., J Phys D: Appl Phys. 33, 1556 (2000).
17.K. S. Mendelson and M. H. Cohen, Geophysics 47, 257 (1982).
18.A. Celzard, C. Deleuze, M. Dufort, G. Furdin, J. F. Marêché, and E. McRae, Phys Rev B 53, 6209 (1996).
19.L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon, New York, 1980).
20.Standard Test Method for Measuring Relative Complex Permittivity and Relative Magnetic Permeability of Solid Materials at Microwave Frequencies, ASTM D5568-08, 2008, 2012.
21.P. Kuzhir, A. Paddubskaya, A. Plyushch, N. Volynets, S. Maksimenko, J. Macutkevic, I. Kranauskaite, J. Banys, E. Ivanov, R. Kostilkova, A. Celzard, V. Fierro, J. Zicans, T. Ivanova, R. Merijs Meri, I. Bochkov, A. Cataldo, F. Micciulla, S. Bellucci, and P. Lambin, “Epoxy composites filled with high surface area-carbon fillers: optimization of electromagnetic shielding, electrical, mechanical and thermal properties,” J. Applied Physics 114, 164304 (2013).
22.J.N. Coleman, M. Cadek, K.P. Ryan, A. Fonseca, Ja.B. Nagy, W.J. Blau, and M.S.J. Ferreira, “Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling,” Polymer 47, 8556 (2006).
23.J.-S. Gao, S.-Ch. Shiu, and J.-L. Tsai, “Mechanical properties of polymer near graphite sheet,” J. Composite Materials 47(4), 449 (2013).

Data & Media loading...


Article metrics loading...



A set of epoxy resin-based composites filled with 0.25 – 2.0 wt.% of commercially available exfoliated graphite (EG) and thick graphene (TG), prepared by suspending EG particles in cyclohexane, and submitting the suspension to a series of grinding and ultrasonic dispersion steps, was produced. The microstructure of such epoxy-graphite composites has been studied by the impulse acoustic microscopy technique. According to acoustic microscopy data, exfoliated graphite microparticles have been well dispersed in the epoxy matrix. TG nanoflakes demonstrated persistent tendency to clustering and formation of agglomerates. The addition of graphite particles in small amount (0.25 – 2.0 wt.%) did not influence the bulk elastic properties of epoxy-graphite composite materials. Being extremely lightweight, 0.003 g cm−3, EG had a lower percolation threshold than TG, at the level of 1-1.5 wt.% against 2.1-3.2 wt.%, respectively. As a result, epoxy composites filled with 1.0-2.0 wt.% EG provided high electromagnetic (EM) interference shielding both at microwave and THz frequencies. In contrast, no significant influence of TG loading was observed at low weight fraction (up to 2 wt.%) on the EM performance of epoxy composites.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd