Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4922911
1.
1.U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
2.
2.Z. L. Wang and J. Song, Science 312, 242 (2006).
http://dx.doi.org/10.1126/science.1124005
3.
3.R. Baraki, N. Novak, T. Frömling, T. Granzow, and J. Rödel, App. Phys. Lett. 105, 111604 (2014).
http://dx.doi.org/10.1063/1.4895941
4.
4.Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, and W.I. Milne, Sensors and Actuators B 143, 606 (2010).
http://dx.doi.org/10.1016/j.snb.2009.10.010
5.
5.J. G. E. Gardeniers, Z.M. Rittersma, and G.J. Burger, J. Appl. Phys. 83, 7844 (1998).
http://dx.doi.org/10.1063/1.367959
6.
6.R. Menon, K. Sreenivas, and V. Gupta, J. Appl. Phys. 103, 094903 (2008).
http://dx.doi.org/10.1063/1.2903531
7.
7.R. Singh, M. Kumar, and S. Chandra, J. Mater. Sci. 42, 4675 (2007).
http://dx.doi.org/10.1007/s10853-006-0372-5
8.
8.R. Ondo-Ndong, G. Ferblantier, M. A. Kalfioui, A. Boyer, and A. Foucaran, J. Cryst. Growth 255, 130 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01243-0
9.
9.M. Kumar, B. Roul, T. N. Bhat, M. K. Rajpalke, P. Misra, L.M. Kukrej, N. Singh, A.T. Kalghatgi, and S. B. Krupanidhi, Mat. Res. Bull. 45, 1581 (2010).
http://dx.doi.org/10.1016/j.materresbull.2010.07.025
10.
10.T. P. Rao, M.C. S. Kumar, S. A. Angayarkanni, and M. Ashok, J. Alloy and Comp. 485, 413 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.05.116
11.
11.F. Conchon, P.O. Renault, P. Goudeau, E. Le Bourhis, E. Sondergard, E. Barthel, S. Grachev, E. Gouardes, V. Rondeau, R. Gy, R. Lazzari, J. Jupille, and N. Brun, Thin Sol. Films 518, 5237 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.04.037
12.
12.H. J. Trodahla, F. Martin, P. Muralt, and N. Setter, Appl. Phys. Lett. 89, 061905 (2006).
http://dx.doi.org/10.1063/1.2335582
13.
13.D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, Appl. Phys. Lett. 83, 677 (2003).
http://dx.doi.org/10.1063/1.1592306
14.
14.V. Bhatt, S. Chandra, S. Kumar, C. M. S. Rauthan, and P. N. dixit, Indian J. Pure & Appl. Phys. 45, 377 (2007).
15.
15.E. Iborra, J. Olivares, M. Clement, J. Vergara, A. Sanz-Hervas, and J. Sangrador, Sens. Actuators, A 115, 501 (2004).
http://dx.doi.org/10.1016/j.sna.2004.03.053
16.
16.F. Engelmark, G. Fucntes, I. V. katardjiev, A. Harsta, U. Smithand, and S. Berg, J. Vac. Sci. Technol., A 18, 1609 (2000).
http://dx.doi.org/10.1116/1.582394
17.
17.H. P. Loebl, M. Klee, C. Metzmacher, W. Brand, R. Milsom, and P. Lok, Mat. Chem. Phys. 79, 143 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00252-3
18.
18.S.B. Krupanidhi and M. sayer, J. Appl. Phys. 56, 3308 (1984).
http://dx.doi.org/10.1063/1.333895
19.
19.R. J. Drese and M. Wuttig, J. Appl. Phys. 98, 073514 (2005).
http://dx.doi.org/10.1063/1.2061888
20.
20.J. H. Jou, M.-Y. Han, and D.-J. Cheng, J. Appl. Phys. 71, 4333 (1992).
http://dx.doi.org/10.1063/1.350815
21.
21.R. Ghosh, D. Basak, and S. Fujihara, J. Appl. Phys. 96, 2689 (2004).
http://dx.doi.org/10.1063/1.1769598
22.
22.W. Shan, R. J. Hauenstein, A. J. Fischer, J. J. Song, W. G. Perry, M. D. Bremser, R. F. Davis, and B. Goldenberg, Phys. Rev. B 54, 13460 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.13460
23.
23.Y. F. Li, B. Yao, Y. M. Lu, C. X. Cong, Z. Z. Zhang, Y. Q. Gai, C. J. Zheng, B. H. Li, Z. P. Wei, D. Z. Shen, X. W. Fan, L. Xiao, S. C. Xu, and Y. Liu, Appl. Phys. Lett. 91, 021915 (2007).
http://dx.doi.org/10.1063/1.2757149
24.
24.B. C. Mohanty, Y.H. Jo, D. H. Yeon, I. J. Choi, and Y. S. Choa, Appl. Phys. Lett. 95, 062103 (2009).
http://dx.doi.org/10.1063/1.3202399
25.
25.Y. Ping, L. Pei, Z. Li-Qiang, W. Xiao-Liang, W. Huan, S. Xi-Fu, and X. Fang-Wei, Chi. Phys. B 21, 016803 (2012).
http://dx.doi.org/10.1088/1674-1056/21/1/016803
26.
26.W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher, and M. Stutzmann, Appl.Phys. Lett. 68, 970 (1996).
http://dx.doi.org/10.1063/1.116115
27.
27.G.G. Stoney, Proc. R. Soc. London, Ser. A. 82, 172 (1909).
http://dx.doi.org/10.1098/rspa.1909.0021
28.
28.S. Ranwa, P. K. Kulriya, V. Dixit, and M. Kumar, J. Appl. Phys. 115, 233706 (2014).
http://dx.doi.org/10.1063/1.4883961
29.
29.M.F. Malek, M.H. Mamat, M.Z. Musa, Z. Khusaimi, M.Z. Sahdan, A.B. Suriani, A. Ishak, I. Saurdi, S.A. Rahmanand, and M. Rusop, J. Alloy. Compd. 610, 575 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.05.036
30.
30.R. K. Sendi and S. Mahmud, J. Phys. Sci. 24, 1 (2013).
31.
31.V. Gupta and A. Mansingh, J. Appl. Phys. 80, 1063 (1996).
http://dx.doi.org/10.1063/1.362842
32.
32.S.Y. Ma, X.H. Yang, X.L. Huang, A.M. Sun, H.S. Song, and H.B. Zhu, J. Alloys. Compd. 566, 9 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.02.179
33.
33.T. Kim, J. Korean Phys. Soc. 58, 787 (2011).
http://dx.doi.org/10.3938/jkps.58.787
34.
34.S. C. Hsu, B. J. Pong, W. H. Li, T. E. Beechem III, S. Graham, and C. Y. Liu, Appl. Phys. Lett. 91, 251114 (2007).
http://dx.doi.org/10.1063/1.2821224
35.
35.J. P. Mathew, G. Varghese, and J. Mathew, Chin. Phys. B 21, 078104 (2012).
http://dx.doi.org/10.1088/1674-1056/21/7/078104
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4922911
Loading
/content/aip/journal/adva/5/6/10.1063/1.4922911
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4922911
2015-06-19
2016-12-08

Abstract

ZnO thick Stress relaxed films were deposited by reactive magnetron sputtering on 2”-wafer of SiO/Si at room temperature. The residual stress of ZnO films was measured by measuring the curvature of wafer using laser scanning method and found in the range of 0.18 x 109 to 11.28 x 109 dyne/cm2 with compressive in nature. Sputter pressure changes the deposition rates, which strongly affects the residual stress and surface morphologies of ZnO films. The crystalline wurtzite structure of ZnO films were confirmed by X-ray diffraction and a shift in (0002) diffraction peak of ZnO towards lower 2θ angle was observed with increasing the compressive stress in the films. The band gap of ZnO films shows a red shift from ∼3.275 eV to ∼3.23 eV as compressive stress is increased, unlike the stress for III-nitride materials. A relationship between stress and band gap of ZnO was derived and proposed. The stress-free growth of piezoelectric films is very important for functional devices applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4922911.html;jsessionid=C4gNVP4DCHmxJ44IFKXjSIsk.x-aip-live-02?itemId=/content/aip/journal/adva/5/6/10.1063/1.4922911&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4922911&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4922911'
Right1,Right2,Right3,