Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
2.Z. L. Wang and J. Song, Science 312, 242 (2006).
3.R. Baraki, N. Novak, T. Frömling, T. Granzow, and J. Rödel, App. Phys. Lett. 105, 111604 (2014).
4.Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, and W.I. Milne, Sensors and Actuators B 143, 606 (2010).
5.J. G. E. Gardeniers, Z.M. Rittersma, and G.J. Burger, J. Appl. Phys. 83, 7844 (1998).
6.R. Menon, K. Sreenivas, and V. Gupta, J. Appl. Phys. 103, 094903 (2008).
7.R. Singh, M. Kumar, and S. Chandra, J. Mater. Sci. 42, 4675 (2007).
8.R. Ondo-Ndong, G. Ferblantier, M. A. Kalfioui, A. Boyer, and A. Foucaran, J. Cryst. Growth 255, 130 (2003).
9.M. Kumar, B. Roul, T. N. Bhat, M. K. Rajpalke, P. Misra, L.M. Kukrej, N. Singh, A.T. Kalghatgi, and S. B. Krupanidhi, Mat. Res. Bull. 45, 1581 (2010).
10.T. P. Rao, M.C. S. Kumar, S. A. Angayarkanni, and M. Ashok, J. Alloy and Comp. 485, 413 (2009).
11.F. Conchon, P.O. Renault, P. Goudeau, E. Le Bourhis, E. Sondergard, E. Barthel, S. Grachev, E. Gouardes, V. Rondeau, R. Gy, R. Lazzari, J. Jupille, and N. Brun, Thin Sol. Films 518, 5237 (2010).
12.H. J. Trodahla, F. Martin, P. Muralt, and N. Setter, Appl. Phys. Lett. 89, 061905 (2006).
13.D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, Appl. Phys. Lett. 83, 677 (2003).
14.V. Bhatt, S. Chandra, S. Kumar, C. M. S. Rauthan, and P. N. dixit, Indian J. Pure & Appl. Phys. 45, 377 (2007).
15.E. Iborra, J. Olivares, M. Clement, J. Vergara, A. Sanz-Hervas, and J. Sangrador, Sens. Actuators, A 115, 501 (2004).
16.F. Engelmark, G. Fucntes, I. V. katardjiev, A. Harsta, U. Smithand, and S. Berg, J. Vac. Sci. Technol., A 18, 1609 (2000).
17.H. P. Loebl, M. Klee, C. Metzmacher, W. Brand, R. Milsom, and P. Lok, Mat. Chem. Phys. 79, 143 (2003).
18.S.B. Krupanidhi and M. sayer, J. Appl. Phys. 56, 3308 (1984).
19.R. J. Drese and M. Wuttig, J. Appl. Phys. 98, 073514 (2005).
20.J. H. Jou, M.-Y. Han, and D.-J. Cheng, J. Appl. Phys. 71, 4333 (1992).
21.R. Ghosh, D. Basak, and S. Fujihara, J. Appl. Phys. 96, 2689 (2004).
22.W. Shan, R. J. Hauenstein, A. J. Fischer, J. J. Song, W. G. Perry, M. D. Bremser, R. F. Davis, and B. Goldenberg, Phys. Rev. B 54, 13460 (1996).
23.Y. F. Li, B. Yao, Y. M. Lu, C. X. Cong, Z. Z. Zhang, Y. Q. Gai, C. J. Zheng, B. H. Li, Z. P. Wei, D. Z. Shen, X. W. Fan, L. Xiao, S. C. Xu, and Y. Liu, Appl. Phys. Lett. 91, 021915 (2007).
24.B. C. Mohanty, Y.H. Jo, D. H. Yeon, I. J. Choi, and Y. S. Choa, Appl. Phys. Lett. 95, 062103 (2009).
25.Y. Ping, L. Pei, Z. Li-Qiang, W. Xiao-Liang, W. Huan, S. Xi-Fu, and X. Fang-Wei, Chi. Phys. B 21, 016803 (2012).
26.W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher, and M. Stutzmann, Appl.Phys. Lett. 68, 970 (1996).
27.G.G. Stoney, Proc. R. Soc. London, Ser. A. 82, 172 (1909).
28.S. Ranwa, P. K. Kulriya, V. Dixit, and M. Kumar, J. Appl. Phys. 115, 233706 (2014).
29.M.F. Malek, M.H. Mamat, M.Z. Musa, Z. Khusaimi, M.Z. Sahdan, A.B. Suriani, A. Ishak, I. Saurdi, S.A. Rahmanand, and M. Rusop, J. Alloy. Compd. 610, 575 (2014).
30.R. K. Sendi and S. Mahmud, J. Phys. Sci. 24, 1 (2013).
31.V. Gupta and A. Mansingh, J. Appl. Phys. 80, 1063 (1996).
32.S.Y. Ma, X.H. Yang, X.L. Huang, A.M. Sun, H.S. Song, and H.B. Zhu, J. Alloys. Compd. 566, 9 (2013).
33.T. Kim, J. Korean Phys. Soc. 58, 787 (2011).
34.S. C. Hsu, B. J. Pong, W. H. Li, T. E. Beechem III, S. Graham, and C. Y. Liu, Appl. Phys. Lett. 91, 251114 (2007).
35.J. P. Mathew, G. Varghese, and J. Mathew, Chin. Phys. B 21, 078104 (2012).

Data & Media loading...


Article metrics loading...



ZnO thick Stress relaxed films were deposited by reactive magnetron sputtering on 2”-wafer of SiO/Si at room temperature. The residual stress of ZnO films was measured by measuring the curvature of wafer using laser scanning method and found in the range of 0.18 x 109 to 11.28 x 109 dyne/cm2 with compressive in nature. Sputter pressure changes the deposition rates, which strongly affects the residual stress and surface morphologies of ZnO films. The crystalline wurtzite structure of ZnO films were confirmed by X-ray diffraction and a shift in (0002) diffraction peak of ZnO towards lower 2θ angle was observed with increasing the compressive stress in the films. The band gap of ZnO films shows a red shift from ∼3.275 eV to ∼3.23 eV as compressive stress is increased, unlike the stress for III-nitride materials. A relationship between stress and band gap of ZnO was derived and proposed. The stress-free growth of piezoelectric films is very important for functional devices applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd