Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4923087
1.
1.A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Limited, London, 1957).
2.
2.G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
3.
3.B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325 (1996).
http://dx.doi.org/10.1126/science.272.5266.1325
4.
4.D. Morelli, G. Meisner, B. Chen, S. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.7376
5.
5.G. Nolas, J. Cohn, and G. Slack, Phys. Rev. B 58, 164 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.164
6.
6.Y. Nishikubo, S. Nakano, K. Kudo, and M. Nohara, Appl. Phys. Lett. 100, 252104 (2012).
http://dx.doi.org/10.1063/1.4729789
7.
7.K. Mori, H. Usui, H. Sakakibara, and K. Kuroki, AIP Adv. 2, 042108 (2012).
http://dx.doi.org/10.1063/1.4759007
8.
8.I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. 56, R12685 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R12685
9.
9.K. Kuroki and R. Arita, J. Phys. Soc. Jpn. 76, 083707 (2007).
http://dx.doi.org/10.1143/JPSJ.76.083707
10.
10.A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, and F. Steglich, Europhys. Lett. 80, 17008 (2007).
http://dx.doi.org/10.1209/0295-5075/80/17008
11.
11.Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
http://dx.doi.org/10.1021/ja800073m
12.
12.M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 4 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107006
13.
13.X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, Solid State Commun. 148, 538 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.09.057
14.
14.X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H.-H. Wen, Phys. Rev. B 79, 2 (2009).
15.
15.M. Fujioka, S. J. Denholme, T. Ozaki, H. Okazaki, and K. Deguchi, Supercond. Sci. Technol. 26, 085023 (2013).
http://dx.doi.org/10.1088/0953-2048/26/8/085023
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4923087 for synthesis, characterization, transport properties, and electronic structure of CoPn (Pn = P, As, and Sb).[Supplementary Material]
17.
17.T. Caillat, J. Phys. Chem. Solids 57, 1351 (1996).
http://dx.doi.org/10.1016/0022-3697(96)00026-1
18.
18.T. Siegrist and F. Hulliger, J. Solid State Chem. 63, 23 (1986).
http://dx.doi.org/10.1016/0022-4596(86)90148-9
19.
19.J. C. Quesnel and R. D. Heyding, Canad. J. Chem. 40, 814 (1962).
http://dx.doi.org/10.1139/v62-120
20.
20.A. Kjekshus and T. Rakke, Acta Chem. Scand. A31, 517 (1977).
http://dx.doi.org/10.3891/acta.chem.scand.31a-0517
21.
21.J. B. Goodenough, J. Solid State Chem. 5, 144 (1972).
http://dx.doi.org/10.1016/0022-4596(72)90022-9
22.
22.H. J. Goldsmid, Applications of Thermoelectricity (Butler and Tanner, London, 1960).
23.
23.P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931).
24.
24.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
25.
25.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
26.
26.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
27.
27.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
28.
28.J. P. Perdew, K. Burke, and M. Emzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
29.
29.J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
30.
30.P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.16223
31.
31.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
32.
32.E. S. Toberer, A. Zevalkink, and G. J. Snyder, J. Mater. Chem. 21, 15843 (2011).
http://dx.doi.org/10.1039/c1jm11754h
33.
33.Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, and G. J. Snyder, Adv. Mater. 26, 3974 (2014).
http://dx.doi.org/10.1002/adma.201400515
34.
34.C. H. Lee, I. Hase, H. Sugawara, H. Yoshizawa, and H. Sato, J. Phys. Soc. Jpn. 75, 123602 (2006).
http://dx.doi.org/10.1143/JPSJ.75.123602
35.
35.J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, Phys. Rev. B 89, 205203 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.205203
36.
36.J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin, and B. C. Sales, J. Appl. Phys. 78, 1013 (1995).
http://dx.doi.org/10.1063/1.360402
37.
37.W. M. Yim, E. V. Fitzke, and F. D. Rosi, J. Mater. Sci. 1, 52 (1966).
http://dx.doi.org/10.1007/BF00549720
38.
38.C. B. Vining, W. Laskow, J. O. Hanson, R. R. Van der Beck, and P. D. Gorsuch, J. Appl. Phys. 69, 4333 (1991).
http://dx.doi.org/10.1063/1.348408
39.
39.V. Zaitsev, M. Fedorov, E. Gurieva, I. Eremin, P. Konstantinov, a. Samunin, and M. Vedernikov, Phys. Rev. B 74, 045207 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045207
40.
40.H. Wang, J. Wang, X. Cao, and G. J. Snyder, J. Mater. Chem. A 2, 3169 (2014).
http://dx.doi.org/10.1039/c3ta14929c
41.
41.K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001).
http://dx.doi.org/10.1143/JJAP.40.4644
42.
42.Y.-L. Pei, H. Wu, D. Wu, F. Zheng, and J. He, J. Am. Chem. Soc. 136, 13902 (2014).
http://dx.doi.org/10.1021/ja507945h
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4923087
Loading
/content/aip/journal/adva/5/6/10.1063/1.4923087
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4923087
2015-06-23
2016-09-29

Abstract

We demonstrate the electrical and thermal transport properties of polycrystalline Co ( = As and Sb) between 300 and 900 K. CoAs shows semiconducting electrical transport up to 900 K, while CoSb exhibits degenerate conduction. Sign inversion of the Seebeck coefficient is observed at ∼310 and ∼400 K for CoAs and CoSb, respectively. Thermal conductivity at 300 K is 11.7 Wm−1K−1 for CoAs and 9.4 Wm−1K−1 for CoSb. The thermoelectric power factor of CoAs is ∼10 μWcm−1K−2, although the dimensionless figure of merit is limited to ∼0.1 due to relatively high thermal conductivity. Using electronic structure calculations, the band gap value is calculated to be 0.55 eV for CoAs and 0.26 eV for CoSb.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4923087.html;jsessionid=GJio0f3xBY1vpaupZTi9EDkc.x-aip-live-02?itemId=/content/aip/journal/adva/5/6/10.1063/1.4923087&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4923087&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4923087'
Right1,Right2,Right3,