Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4923192
1.
1.T. D. Mishima, M. Edirisooriya, N. Goel, and M. B. Santos, Appl. Phys. Lett 88, 191908 (2006).
http://dx.doi.org/10.1063/1.2203223
2.
2.T. D. Mishima, M. Edirisooriya, and M. B. Santos, Appl. Phys. Lett 91, 062106 (2007).
http://dx.doi.org/10.1063/1.2768033
3.
3.R. L. Kallaher, J. J. Heremans, N. Goel, S. J. Chung, and M. B. Santos, Phys. Rev. B 81, 075303 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075303
4.
4.A. Oral, M. Kaval, M. Dede, H. Masuda, A. Okamoto, I. Shibasaki, and A. Sandhu, IEEE Trans. Magn. 38, 2438 (2002).
http://dx.doi.org/10.1109/TMAG.2002.803607
5.
5.S. Datta, T. Ashley, R. Chau, K. Hilton, R. Jefferies, T. Martin, and T. Phillips, in IEEE Proceedings of the International Electron Devices Meeting (IEEE, New York, 2005), p. 763.
6.
6.S. A. Solin, D. R. Hines, A. C. H. Rowe, J. S. Tsai, Yu. A. Pashkin, S. J. Chung, N. Goel, and M. B. Santos, Appl. Phys. Lett. 80, 4012 (2002).
http://dx.doi.org/10.1063/1.1481238
7.
7.S. Adachi, Properties of Semiconductor Alloys; Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons Ltd, West Sussex, UK, 2009), p. 182.
8.
8.Y. Z. Gao, X. Y. Gong, G. H. Wu, Y. B. Feng, T. Makino, and H. Kan, Jpn. J. Appl. Phys. 38, 685 (1999).
http://dx.doi.org/10.1143/JJAP.38.685
9.
9.Y. Z. Gao, X. Y. Gong, G. H. Wu, Y. B. Feng, T. Makino, and H. Kan, Jpn. J. Appl. Phys. 50, 060206 (2011).
http://dx.doi.org/10.7567/JJAP.50.060206
10.
10.A. Okamoto, T. Yoshida, S. Muramatsu, and I. Shibasaki, J. Crystal Growth 201/202, 765 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)01466-3
11.
11.A. Okamoto, A. Ashihara, and I. Shibasaki, in Proceedings of the 10th International Conference on Solid State Sensors and Actuators (1999) p. 514.
12.
12.A. Okamoto, A. Ashihara, T. Akaogi, and I. Shibasaki, J. Crystal Growth 227/228, 619 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00784-9
13.
13.I. Shibasaki, Proceedings of the 10th International Conference on Narrow Gap Semiconductors, IPAP ConferenceSeries Vol. 2 (2001), p. 137.
14.
14.A. Okamoto and I. Shibasaki, J. Crystal Growth 251, 560 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02448-X
15.
15.A. Okamoto, H. Geka, I. Shibasaki, and K. Yoshida, J. Crystal Growth 278, 604 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.12.077
16.
16.H. Geka, A. Okamoto, S. Yamada, H. Goto, K. Yoshida, and I. Shibasaki, J. Crystal Growth 301-302, 152 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.257
17.
17.I. Shibasaki, H. Geka, and A. Okamoto, Narrow Gap Semiconductors 2007, Springer Proceedings in Physics (2007), Vol. 199, p. 89.
18.
18.S. Ishida, T. Manago, K. Oto, A. Fijimoto, H. Geka, A. Okamoto, and I. Shibasaki, Narrow Gap Semiconductors 2007, Springer Proceedings in Physics (2007), Vol. 199, p. 203.
19.
19.T. Manago, N. Nisizako, S. Ishida, H. Geka, and I. Shibasaki, J. Crystal Growth 311, 1711 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.11.082
20.
20.N. Nishizako, T. Manago, S. Ishida, H. Geka, and I. Shibasaki, J. Crystal Growth 311, 2128 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.10.057
21.
21.N. Nishizako, T. Manago, S. Ishida, H. Geka, and I. Shibasaki, Physica E 42, 975 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.116
22.
22.S. Ishida, T. Manago, N. Nishizako, H. Geka, and I. Shibasaki, Physica E 42, 984 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.135
23.
23.T. Manago, N. Nishizako, S. Ishida, H. Geka, I. Shibasaki, K. Makise, and K. Mitsuishi, Physics Procedia 3, 1219 (2010).
http://dx.doi.org/10.1016/j.phpro.2010.01.166
24.
24.S. Ishida, T. Manago, N. Nishizako, H. Geka, and I. Shibasaki, Physic Procedia 3, 1213 (2010).
http://dx.doi.org/10.1016/j.phpro.2010.01.165
25.
25.T. Manago, S. Ishida, H. Geka, and I. Shibasaki, J. Appl. Phys. 117, 065701 (2015).
http://dx.doi.org/10.1063/1.4907806
26.
26.T. Tanaka, M. Washima, and H. Sakaguchi, Jpn. J. Appl. Phys. 38, 1107 (1999).
http://dx.doi.org/10.1143/JJAP.38.1107
27.
27.J. Heremans, D. L. Partin, D. T. Morelli, C. M. Thrush, G. Karczewski, and J. K. Furdyna, J. Appl. Phys. 74, 1793 (1993).
http://dx.doi.org/10.1063/1.354783
28.
28.M. Kudo and T. Mishima, Jpn. J. Appl. Phys. 37, L1132 (1998).
http://dx.doi.org/10.1143/JJAP.37.L1132
29.
29.Software for the simulation of electronic and optoelectronic semiconductor nanodevices and materials, http://www.nextnano.de/.
30.
30.W. E. Spicer, Z. L. Weber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Sci. Technol. B 6, 1245 (1988).
http://dx.doi.org/10.1116/1.584244
31.
31.J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.465
32.
32.I. Shibasaki, H. Geka, S. Ishida, K. Oto, T. Ishihara, and T. Yoshida, Microelectronics Journal 40, 542 (2009).
http://dx.doi.org/10.1016/j.mejo.2008.06.093
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4923192
Loading
/content/aip/journal/adva/5/6/10.1063/1.4923192
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4923192
2015-06-24
2016-09-30

Abstract

The resistivity of InAs Sb/AlInSb quantum wells (QWs) is much lower than that of InSb/AlInSb QWs, staying low resistivity even at low temperature. Fundamental difference in low temperature transport properties between InSb/AlInSb and InAs Sb/AlInSb QWs was revealed, based on the band diagram calculations of these QWs. Band diagrams of InAs Sb /AlInSb QWs showed that the energy band of the InAs Sb layer moves downward with increasing As content . The QW is type I at equal to 0, becomes type II at equal to 0.1. The Fermi level ( ) of the InSb QWs lies in the band gap and below apart from the bottom of the conduction band, while of the InAs Sb QWs is above the bottom of the conduction band of the well. The calculated sheet carrier densities are in good agreement with the experimental results. It well explains that the sheet carrier density difference between InSb and InAs Sb QWs mainly originates from this band diagram difference and the position of .

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4923192.html;jsessionid=6LeG6p9YEtICX1ajLux-fKZZ.x-aip-live-03?itemId=/content/aip/journal/adva/5/6/10.1063/1.4923192&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4923192&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4923192'
Right1,Right2,Right3,