Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4923195
1.
1.D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 5801 (2006).
http://dx.doi.org/10.1126/science.1133628
2.
2.R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science 323, 5912 (2009).
3.
3.W. Cai, U. K. Chettiar, A. V Kildishev, and V. M. Shalaev, Nat. Photonics 1, 4 (2007).
http://dx.doi.org/10.1038/nphoton.2007.28
4.
4.J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nat. Mater. 8, 7 (2009).
http://dx.doi.org/10.1038/nmat2461
5.
5.J. Pendry, Phys. Rev. Lett. 85, 18 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
6.
6.K. Aydin, I. Bulu, and E. Ozbay, Opt. Express 13, 22 (2005).
http://dx.doi.org/10.1364/OPEX.13.008753
7.
7.N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Phys. Rev. Lett. 100, 20 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207402
8.
8.B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, Appl. Phys. Lett. 97, 5 (2010).
9.
9.D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, Phys. Rev. E 71, 3 (2005).
10.
10.S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, Phys. Rev. Lett. 89, 21 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.213902
11.
11.X. Chen, H. F. Ma, X. Y. Zou, W. X. Jiang, and T. J. Cui, J. Appl. Phys. 110, 4 (2011).
12.
12.H. F. Ma and T. J. Cui, Nat. Commun. 1 (2010).
13.
13.N. Kundtz and D. R. Smith, Nat. Mater. 9, 2 (2010).
http://dx.doi.org/10.1038/nmat2610
14.
14.Z. H. Jiang, M. D. Gregory, and D. H. Werner, Phys. Rev. B 84, 16 (2011).
15.
15.Q. Wu, P. Pan, F.-Y. Meng, L.-W. Li, and J. Wu, Appl. Phys. A 87, 2 (2007).
16.
16.G. Von Trentini, Antennas Propagation, IRE Trans. 4, 4 (1956).
17.
17.T. Akalin, J. Danglot, O. Vanbesien, and D. Lippens, Microw. Wirel. Components Lett. IEEE 12, 2 (2002).
18.
18.A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, Antennas Propagation, IEEE Trans. 53, 1 (2005).
http://dx.doi.org/10.1109/TAP.2004.840528
19.
19.A. Ourir, A. de Lustrac, and J.-M. Lourtioz, Appl. Phys. Lett. 88, 8 (2006).
http://dx.doi.org/10.1063/1.2172740
20.
20.D. Germain, D. Seetharamdoo, S. Nawaz Burokur, and A. de Lustrac, Appl. Phys. Lett. 103, 12 (2013).
http://dx.doi.org/10.1063/1.4821357
21.
21.N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, Antennas Propagation, IEEE Trans. 54, 1 (2006).
http://dx.doi.org/10.1109/TAP.2005.861578
22.
22.C. Pfeiffer and A. Grbic, Phys. Rev. Lett. 110, 19 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.197401
23.
23.B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, Sci. Rep. 4 (2014).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4923195
Loading
/content/aip/journal/adva/5/6/10.1063/1.4923195
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4923195
2015-06-24
2016-12-02

Abstract

Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4923195.html;jsessionid=mlJGmH_LmtvW4nG5LxPEbTrC.x-aip-live-03?itemId=/content/aip/journal/adva/5/6/10.1063/1.4923195&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4923195&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4923195'
Right1,Right2,Right3,