Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4923317
1.
1.C. Kim, D. Martyshkin, V. Fedorov, and S. Mirov, Opt. Express 16, 4952 (2008).
http://dx.doi.org/10.1364/OE.16.004952
2.
2.D. S. Wiersma, Nature physics 4, 359 (2008).
http://dx.doi.org/10.1038/nphys971
3.
3.M. Leonetti and C. Lopez, Appl. Phys. Lett. 101, 251120 (2012).
http://dx.doi.org/10.1063/1.4773056
4.
4.V. Letokhov, Sov. Phys. JETP 26, 835 (1968).
5.
5.V. M. Markushev, V. Zolin, and C. M. Briskina, Sov. J. Quantum Electron. 16, 281 (1986).
http://dx.doi.org/10.1070/QE1986v016n02ABEH005792
6.
6.J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, Opt. Commun. 285, 5276 (2012).
http://dx.doi.org/10.1016/j.optcom.2012.06.094
7.
7.D. Wiersma, Nature 406, 132 (2000).
http://dx.doi.org/10.1038/35018184
8.
8.M. Leonetti, C. Conti, and C. Lopez, Nature Photonics 5, 615 (2011).
http://dx.doi.org/10.1038/nphoton.2011.217
9.
9.M. Leonetti, C. Conti, and C. López, Appl. Phys. Lett. 101, 051104 (2012).
http://dx.doi.org/10.1063/1.4739942
10.
10.N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, Nature physics 10, 426 (2014).
http://dx.doi.org/10.1038/nphys2939
11.
11.K. Yao, G. Feng, L. Yang, J. Yi, Y. Song, and S. Zhou, Chin. Opt. Lett. 10, 082901 (2012).
http://dx.doi.org/10.3788/COL201210.082901
12.
12.R. G. El-Dardiry, A. P. Mosk, and A. Lagendijk, Opt. Lett. 35, 3063 (2010).
http://dx.doi.org/10.1364/OL.35.003063
13.
13.Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, Nature physics 9, 357 (2013).
http://dx.doi.org/10.1038/nphys2614
14.
14.J. Williams, V. Fedorov, D. Martyshkin, I. Moskalev, R. Camata, and S. Mirov, Opt. Express 18, 25999 (2010).
http://dx.doi.org/10.1364/OE.18.025999
15.
15.S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, Opt. Mater. Express 1, 898 (2011).
http://dx.doi.org/10.1364/OME.1.000898
16.
16.V. Fedorov, T. Konak, J. Dashdorj, M. Zvanut, and S. Mirov, Opt. Mater. 37, 262 (2014).
http://dx.doi.org/10.1016/j.optmat.2014.06.004
17.
17.S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, IEEE J. SEL. TOP. QUANT. 21, 1601719 (2015).
http://dx.doi.org/10.1109/JSTQE.2014.2346512
18.
18.P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, Opt. Mater. Express 3, 1250 (2013).
http://dx.doi.org/10.1364/OME.3.001250
19.
19.L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quant. Electron. 32, 885 (1996).
http://dx.doi.org/10.1109/3.502365
20.
20.J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, Opt. Lett. 38, 2194 (2013).
http://dx.doi.org/10.1364/OL.38.002194
21.
21.J. Macdonald, S. Beecher, P. Berry, K. Schepler, and A. Kar, Appl. Phys. Lett. 102, 161110 (2013).
http://dx.doi.org/10.1063/1.4803058
22.
22.P. A. Berry and K. L. Schepler, Opt. Express 18, 15062 (2010).
http://dx.doi.org/10.1364/OE.18.015062
23.
23.J. Willimas, D. Martyshkin, V. Fedorov, I. Moskalev, R. Camata, and S. Mirov, in SPIE LASE: International Society for Optics and Photonics in SPIE LASE, San Francisco, California, USA, 22 January, 2011, edited by W. Andrew Clarkson, Norman Hodgson, and Ramesh Shori (SPIE, 2011) , Vol. 7912, pp. 79121H-79121H-6.
24.
24.J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, Appl. Phys. A 91, 333 (2008).
http://dx.doi.org/10.1007/s00339-008-4410-9
25.
25.C. Kim, D. Martyshkin, V. Fedorov, and S. Mirov, Opt. Commun. 282, 2049 (2009).
http://dx.doi.org/10.1016/j.optcom.2009.02.023
26.
26.G. Feng, C. Yang, and S. Zhou, Nano lett. 13, 272 (2012).
http://dx.doi.org/10.1021/nl304066h
27.
27.J. Yi, G. Feng, C. Yang, H. Zhang, K. Yao, and S. Zhou, Opt. Commun. 309, 170 (2013).
http://dx.doi.org/10.1016/j.optcom.2013.07.010
28.
28.D. Martyshkin, V. Fedorov, C. Kim, I. Moskalev, and S. Mirov, Journal of Optics 12, 024005 (2010).
http://dx.doi.org/10.1088/2040-8978/12/2/024005
29.
29.I. T. Sorokina, Opt. Mater. 26, 395 (2004).
http://dx.doi.org/10.1016/j.optmat.2003.12.025
30.
30.H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, Phys. Rev. Lett. 82, 2278 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2278
31.
31.V. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. Konstantinov, L. Postnova, V. Levchenko, E. Sorokin, and I. T. Sorokina, in Advanced Solid-State Photonics (Optical Society of America, 2004) , Vol. 367.
32.
32.A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, Opt. Mater. 29, 703 (2007).
http://dx.doi.org/10.1016/j.optmat.2005.11.019
33.
33.H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
http://dx.doi.org/10.1063/1.104834
34.
34.H. Yokoyama, Science 256, 66 (1992).
http://dx.doi.org/10.1126/science.256.5053.66
35.
35.H. Cao, Waves in random media 13, R1 (2003).
http://dx.doi.org/10.1088/0959-7174/13/3/201
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4923317
Loading
/content/aip/journal/adva/5/6/10.1063/1.4923317
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4923317
2015-06-26
2016-09-27

Abstract

We demonstrate a random lasing emission based on microporous surface of Cr2+ :ZnSe crystal prepared by femtosecond pulsed laser ablation in high vacuum (below 5 × 10−4 Pa). The scanning electron microscope results show that there are a mass of micropores with an average size of ∼13 μm and smaller ones with ∼1.2 μm on the surface of Cr2+ :ZnSe crystal. The adjacent micropore spacing of the smaller micropores ranges from 1 μm to 5 μm. Under 1750 nm excitation of Nd:YAG (355 nm) pumped optical parametric oscillator, a random lasing emission with center wavelength of 2350 nm and laser-like threshold of 0.3 mJ/pulse is observed. The emission lifetime of 2350 nm laser reduces from 800 ns to 30 ns as the pump energy increases above threshold. The emission spectra and decay time of smooth surface, groove and microporous surface of Cr2+ :ZnSe crystal are contrasted. The optional pump wavelength range is from 1500 nm to 1950 nm, which in accordance with the optical absorption property of Cr2+ :ZnSe crystal. The peak position of excitation spectra is almost identical to the strongest absorption wavelength.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4923317.html;jsessionid=poFF_gaCla7rc0lBnLSL_Kip.x-aip-live-02?itemId=/content/aip/journal/adva/5/6/10.1063/1.4923317&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4923317&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4923317'
Right1,Right2,Right3,