Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
2.H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, Phys. Rev. B 86, 205104 (2012).
3.A. Dimitriadis, N. Kantartzis, and T. Tsiboukis, Appl. Phys. A 109, 10651070 (2012).
4.H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, Appl. Phys. A 107, 261268 (2012).
5.H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, J. Appl. Phys. 110, 014909-014909-8 (2011).
6.J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, Appl. Phys. A 108, 329-335 (2012).
7.L. Li, Y. Yang, and C. Liang, J. Appl. Phys. 110, 063702-063702-5 (2011).
8.M. Li, S. Q. Xiao, Y. Y. Bai, and B. Z. Wang, IEEE Antennas Wireless Propag. Lett. 11, 748-751 (2012).
9.S. Li, J. Gao, X. Cao, and Z. Zhang, J. Appl. Phys. 115, 213703-213703-5 (2014).
10.B. Y. Wang, S. B. Liu, B. R. Bian, Z. W. Mao, X. C. Liu, B. Ma, and L. Chen, J. Appl. Phys. 116, 094504-094504-7 (2014).
11.X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, Appl. Phys. Lett. 101, 154102-154102-4 (2012).
12.H. Kong, G. Li, Z. Jin, G. Ma, Z. Zhang, and C. Zhang, J. Infrared Milli. Terahz Waves 33, 649656 (2012).
13.L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, Opt. Express 37, 154-156 (2012).
14.S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, Appl. Phys. Lett. 99, 253104 (2011).
15.N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B. 79, 125104 (2009).
16.Y. Ma, Q Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett. 36, 945-947 (2011).
17.H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, J. Opt. 14, 085102 (2012).
18.W. Zhu, X. Zhao, B. Gong, L. Liu, and B. Su, Appl. Phys. A 102, 147-151 (2011).
19.X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, J. Opt. 16, 125107 (2014).
20.J. Sun, L. Liu, G. Dong, and J. Zhou, Opt. Express 19, 21155-21162 (2011).
21.F. Costa, S. Genovesi, A. Monorchio, and G. Manara, IEEE Trans. Antennas Propag. PP, 1-1 (2012).
22.H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, J. Phys. D: Appl. phys. 43, 225102 (2010).

Data & Media loading...


Article metrics loading...



A dual-band metamaterial absorber (MA) based on triangular resonators is designed and investigated in this paper. It is composed of a two-dimensional periodic metal-dielectric-metal sandwiches array on a dielectric substrate. The simulation results clearly show that this absorber has two absorption peaks at 14.9 and 18.9 GHz, respectively, and experiments are conducted to verify the proposed designs effectively. For each polarization, the dual-band absorber is insensitive to the incident angle (up to 60°) and the absorption peaks remain high for both transverse electric (TE) and transverse magnetic (TM) radiation. To study the physical mechanism of power loss, the current distribution at the dual absorption peaks is given. The MA proposed in this paper has potential applications in many scientific and martial fields.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd