Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4923325
1.
1.M. Novello, M. Visser, and G. Volovik, Artificial Blackholes (World Scientific, Singapore, 2002).
2.
2.U. Leonhardt and T. G. Philbin, Geometry and Light: The Science of Invisibility (Dover, Mineola, NY, 2010).
3.
3.Sh. Dehdashti, A. Mahdifar, and R. Roknizadeh, “Analogue special and general relativity by optical multilayer thin films: The Rindler space case,” J. Mod. Opt. 60, 233 (2013).
http://dx.doi.org/10.1080/09500340.2013.769638
4.
4.A. Y. Khrennikov, Ubiquitous Quantum Structure (Springer, 2010).
5.
5.A. Y. Khrennikov, Contextual Approach to Quantum Formalism (Springer, 2009).
6.
6.F. Bagarello, Quantum Dynamics for Classical Systems (John Wiley, Inc.,2013).
7.
7.C. Joas and C. Lehner, “The classical roots of wave mechanics: Schrödinger’s transformations of the optical mechanical analogy,” Studies in History and Philosophy of Modern Physics 40, 338 (2009).
http://dx.doi.org/10.1016/j.shpsb.2009.06.007
8.
8.V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, 1984).
9.
9.S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev. 3, 243 (2009).
http://dx.doi.org/10.1002/lpor.200810055
10.
10.D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Natu. 424, 817 (2003).
http://dx.doi.org/10.1038/nature01936
11.
11.A. Perez-Leija, H. Moya-Cessa, F. Soto-Eguibar, O. Aguilar-Loreto, and D. N. Christodoulides, “Classical analogues to quantum nonlinear coherent states in photonic lattices,” Opt. Comm. 284, 1833 (2011).
http://dx.doi.org/10.1016/j.optcom.2010.12.005
12.
12.A. Perez-Leija, H. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Glauber-Fock photonic lattices,” Opt. Lett. 35, 2409 (2010).
http://dx.doi.org/10.1364/OL.35.002409
13.
13.A. A. Sukhorukov, A. S. Solntsev, and J. E. Sipe, “Classical simulation of squeezed light in optical waveguide arrays,” Phys. Rev. A 87, 053823 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.053823
14.
14.R. de J. León-Montiel and H. Moya-Cessa, “Modeling non-linear coherent states in fiber arrays,” Int. J. Qua. Inform. 9, 349 (2011).
http://dx.doi.org/10.1142/S0219749911007319
15.
15.R. Keil, A. Perez-Leija, P. Aleahmad, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Obsevation of block-like revivals in semi-infinite Glauber-Fock photonic lattices,” Opt. Lett. 37, 3801 (2012).
http://dx.doi.org/10.1364/OL.37.003801
16.
16.A. Zúñiga-Segundo, B. M. Rodriguez-Lara, C. Fernández, J. David, and H. M. Moya-Cessa, “Jacobi photonic lattices and their SUSY partners,” Opt. Exp. 22, 987 (2014).
http://dx.doi.org/10.1364/OE.22.000987
17.
17.A. Perez-Leija, R. Keil, A. Kay, H. M. Moya-Cessa, S. Nolte, L.-C. Kwek, B. M. Rodriguez-Lara, A. Szameit, and D. N. Christodoulides, “Coherent quantum transport in photonic lattices,” Phys. Rev. A 87, 012309 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.012309
18.
18.E. Schrödinger, “Der stetige Übergang von der Mikro-zur Makromechanik,” Naturwissenschaften 14, 664 (1926).
http://dx.doi.org/10.1007/BF01507634
19.
19.R. J. Glauber, “Timedependent statistics of the Ising model,” J. Math. Phys. 4, 294 (1963).
http://dx.doi.org/10.1063/1.1703954
20.
20.J. R. Klauder, “Continuous-representation theory. I. Postulates of continuous-representation theory,” J. Math. Phys. 4, 1055 (1963).
http://dx.doi.org/10.1063/1.1704034
21.
21.W. M. Zhang and R. Gilmore, “Coherent states: Theory and some applications,” Rev. Mod. Phys. 62, 867 (1990).
http://dx.doi.org/10.1103/RevModPhys.62.867
22.
22.J. P. Gazeau, Coherent States in Quantum Physics (Wiley VCH, New York, 2009).
23.
23.M. Comberscure and D. Robert, Coherent States and Applications in Mathematical Physics (Springer, Berlin, 2012).
24.
24.W. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” Rev. Mod. Phys. 75, 715 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.715
25.
25.A. P. Perelomov, Generalized Coherent States and their Applications (Springer, Berlin, 1986).
26.
26.Sh. Dehdashti, A. Mahdifar, and R. Roknizadeh, “Coherent states of α-deformed Weyl-Heisenberg algebra,” Int. J. Geom. Method Mod. Phys 10, 1350014 (2013).
http://dx.doi.org/10.1142/S021988781350014X
27.
27.J. F. Cariñena, Manuel F. Rañada, and M. Santander, “The quantum harmonic oscillator on the sphere and the hyperbolic plane,” Ann. Phys. 322, 2249 (2007).
http://dx.doi.org/10.1016/j.aop.2006.10.010
28.
28.S. C. Y. Cruz, J. Negro, and L. M. Nieto, “On position-dependent mass harmonic oscillators,” Phys. Let. A 369, 400 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.05.040
29.
29.L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence,” Opt. Lett. 4, 205 (1979).
http://dx.doi.org/10.1364/OL.4.000205
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4923325
Loading
/content/aip/journal/adva/5/6/10.1063/1.4923325
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4923325
2015-06-26
2016-10-01

Abstract

In this paper, first, by introducing Holstein-Primakoff representation of -deformed algebra, we achieve the associated non-linear coherent states, including (2) and (1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of , we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel parameter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4923325.html;jsessionid=EG42LxsenQ2yXr3eje_4SGj7.x-aip-live-02?itemId=/content/aip/journal/adva/5/6/10.1063/1.4923325&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4923325&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4923325'
Right1,Right2,Right3,