Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/6/10.1063/1.4923371
1.
1.Ullmann’s encyclopedia of industrial chemistry, 7th ed. (John Wiley and Sons, Inc, 2000).
2.
2.C. Shi, P. V. Krivenko, and D. Roy, Alkali-activated cement and concretes (Taylor and Frances Group, London and New York, 2006).
3.
3.J. Nordstrom, E. Nilsson, P. Jarvol, M. Nayeri, A. Palmqvist, J. Bergenholtz, and A. Matic, “Concentration- and pH-dependence of highly alkaline sodium silicate solutions,” J. Colloid Interface Sci. 356(1), 37-45 (2011).
http://dx.doi.org/10.1016/j.jcis.2010.12.085
4.
4.D. Dimas, I. Giannopoulou, and D. Panias, “Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology,” J. Mater. Sci. 44(14), 3719-3730 (2009).
http://dx.doi.org/10.1007/s10853-009-3497-5
5.
5.G. Engelhardt and D. Michel, High resolution solid state NMR of silicates and zeolites (John Wiley & Sons, Australia, 1987).
6.
6.G. Engelhardt, D. Zeigan, H. Jancke, D. Hoebbel, and W. Wieker, “29Si NMR-spectroscopy of silicate solutions 2. Dependence of structure of silicate anions in water solutions from Na-Si ratio,” Z. Anorg. Allg. Chem. 418(1), 17-28 (1975).
http://dx.doi.org/10.1002/zaac.19754180103
7.
7.I. Halasz, M. Agarwal, R. Li, and N. Miller, “What can vibrational spectroscopy tell about the structure of dissolved sodium silicates?,” Microporous Mesoporous Mater. 135(1-3), 74-81 (2010).
http://dx.doi.org/10.1016/j.micromeso.2010.06.013
8.
8.X. Yang, W. Zhu, and Q. Yang, “The viscosity properties of sodium silicate solutions,” J. Solution Chem. 37(1), 73-83 (2008).
http://dx.doi.org/10.1007/s10953-007-9214-6
9.
9.H. Jansson and L. Tang, “The initial setting time of ground granulated blastfurnace slag GGBS and its relation to the modulus of the alkali-activating solution,” in Proceeding of the XXII Nordic Concrete Research Symposium (NCR), Reykjavik, Iceland, (2014).
10.
10.S. A. Bernal, J. L. Provis, V. Rose, and R. Mejia de Gutierrez, “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends,” Cem. Concr. Compos. 33(1), 46-54 (2011).
http://dx.doi.org/10.1016/j.cemconcomp.2010.09.004
11.
11.A. FernandezJimenez and F. Puertas, “Alkali-activated slag cements: Kinetic studies,” Cem. Concr. Res. 27(3), 359-368 (1997).
http://dx.doi.org/10.1016/S0008-8846(97)00040-9
12.
12.D. Ravikumar and N. Neithalath, “Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry,” Thermochim. Acta 546, 32-43 (2012).
http://dx.doi.org/10.1016/j.tca.2012.07.010
13.
13.T. W. Cheng and J. P. Chiu, “Fire-resistant geopolymer produced by granulated blast furnace slag,” Miner. Eng. 16(3), 205-210 (2003).
http://dx.doi.org/10.1016/S0892-6875(03)00008-6
14.
14.M. Criado, A. Fernandez-Jimenez, A. Palomo, I. Sobrados, and J. Sanz, “Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey,” Microporous Mesoporous Mater. 109(1-3), 525-534 (2008).
http://dx.doi.org/10.1016/j.micromeso.2007.05.062
15.
15.W. Kozminski and K. Jackowski, “Application of adiabatic inversion pulses for elimination of baseline distortions in Fourier transform NMR. A natural abundance 17O NMR spectrum for gaseous acetone,” Magn. Reson. Chem. 38(6), 459-462 (2000).
http://dx.doi.org/10.1002/1097-458X(200006)38:6%3C459::AID-MRC678%3E3.0.CO;2-4
16.
16.J. Schraml, P. Sandor, S. Korec, M. Krump, and B. Foller, “Improved baseline in 29Si NMR spectra of water glasses,” Magn. Reson. Chem. 51(7), 403-406 (2013).
http://dx.doi.org/10.1002/mrc.3961
17.
17.K. Woelk, P. Trautner, H. G. Niessen, and R. E. Gerald, “RIDE’n RIPT-ring down elimination in rapid imaging pulse trains,” J. Magn. Reson. 159(2), 207-212 (2002).
http://dx.doi.org/10.1016/S1090-7807(02)00105-2
18.
18.P. H. C. Eilers, “A perfect smoother,” Anal. Chem. 75(14), 3631-3636 (2003).
http://dx.doi.org/10.1021/ac034173t
19.
19.A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199-1205 (2007).
http://dx.doi.org/10.1002/jrs.1753
20.
20.J. Zhang, E. A. Weissinger, S. Peethamparan, and G. W. Scherer, “Early hydration and setting of oil well cement,” Cem. Concr. Res. 40(7), 1023-1033 (2010).
http://dx.doi.org/10.1016/j.cemconres.2010.03.014
21.
21.R. K. Harris and C. T. G. Knight, “29Si NMR-studies of aqueous silicate solutions 4. Tetraalkylammonium hydroxide solutions,” J. Mol. Struct. 78(3-4), 273-278 (1982).
http://dx.doi.org/10.1016/0022-2860(82)80013-6
22.
22.S. D. Kinrade and T. W. Swaddle, “29Si NMR-studies of aqueous silicate solutions 1. Chemical shifts and equlibria,” Inorg. Chem. 27(23), 4253-4259 (1988).
http://dx.doi.org/10.1021/ic00296a034
23.
23.R. O. Gould, B. M. Lowe, and N. A. Macgilp, “Investigation of aqueous sodium metasilicate solutions by 29SI NMR-spectroscopy,” Journal of the Chemical Society-Chemical Communications (17), 720-721 (1974).
http://dx.doi.org/10.1039/c3974000720b
24.
24.L. M. Levering, “A vibrational spectroscopic study of aqueous hydrogen halide solutions: Application to atmospheric aerosol chemistry,” Thesis, The Ohio State University, 2005 , https://research.chemistry.ohio-state.edu/allen/files/2011/09/thesis_levering_ms_3_05.pdf.
25.
25.J. Riemenschneider, “Spectroscopic investigations on pure water and aqueous salt solutions in the mid infrared region,” Thesis, University of Rostock, 2011 , http://rosdok.uni-rostock.de/file/rosdok_disshab_0000000812/rosdok_ derivate_0000004838/Dissertation_Riemenschneider_2012.pdf.
26.
26.I. Lecomte, C. Henrist, M. Liegeois, F. Maseri, A. Rulmont, and R. Cloots, “(Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement,” J. Eur. Ceram. Soc. 26(16), 3789-3797 (2006).
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.12.021
27.
27.F. Puertas and A. Fernandez-Jimenez, “Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes,” Cem. Concr. Compos. 25(3), 287-292 (2003).
http://dx.doi.org/10.1016/S0958-9465(02)00059-8
28.
28.P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, and U. Rattanasak, “Comparative study on the characteristics of fly ash and bottom ash geopolymers,” Waste Manage. (Oxford) 29(2), 539-543 (2009).
http://dx.doi.org/10.1016/j.wasman.2008.06.023
29.
29.I. Halasz, M. Agarwal, R. Li, and N. Miller, “Vibrational spectra and dissociation of aqueous Na2SiO3 solutions,” Catal. Lett. 117(1-2), 34-42 (2007).
http://dx.doi.org/10.1007/s10562-007-9141-6
30.
30.S. S. Zumdahl, Chemical principles, 4th ed. (2002).
31.
31.S. J. Song and H. M. Jennings, “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag,” Cem. Concr. Res. 29(2), 159-170 (1999).
http://dx.doi.org/10.1016/S0008-8846(98)00212-9
32.
32.A. R. Brough and A. Atkinson, “Sodium silicate-based, alkali-activated slag mortars Part I. Strength, hydration and microstructure,” Cem. Concr. Res. 32(6), 865-879 (2002).
http://dx.doi.org/10.1016/S0008-8846(02)00717-2
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/6/10.1063/1.4923371
Loading
/content/aip/journal/adva/5/6/10.1063/1.4923371
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/6/10.1063/1.4923371
2015-06-29
2016-12-08

Abstract

Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance (29Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO footprint cements, i.e. materials based on industrial waste or by-products.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/6/1.4923371.html;jsessionid=m1AjAh_X0yOrwlqbBRLXW03N.x-aip-live-02?itemId=/content/aip/journal/adva/5/6/10.1063/1.4923371&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/6/10.1063/1.4923371&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/6/10.1063/1.4923371'
Right1,Right2,Right3,