Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal Germanium and Silicon at 77°K and 300°K,” Phys. Rev. 99, 11511155 (1955).
2.G. G. Macfarlane and V. Roberts, “Infrared absorption of Silicon near the lattice edge,” Phys. Rev. 98(6), 1865 (1955).
3.C. D. Salzberg and J. J. Villa, “Infrared refractive indexes of Silicon, Germanium and modified Selenium glass,” J. Opt. Soc. Am. 47(3), 244246 (1957).
4.W. Spitzer and H. Y. Fan, “Infrared absorption in n-type silicon,” Phys. Rev. 108(2), 268271 (1957).
5.G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, “Fine structure in the absorption-edge spectrum of si,” Phys. Rev. 111, 12451254 (Sep 1958).
6.G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, “Exciton and phonon effect in the absorption spectra of Germanium and Silicon,” J. Phys. Chem. Solids 8, 388392 (1959).
7.H. R. Phillip and E. A. Taft, “Optical constants of Silicon in the region 1 to 10 eV,” Phys. Rev. 120(1), 3738 (1960).
8.A. A. Vol’fson and V. K. Subashiev, “Fundamental absorption edge of silicon heavily doped with donor or acceptor impurities,” Sov. Phys. Semicond. 1(3), 327332 (1967).
9.C. Anagnostopoulos and G. Sadasiv, “Fine structure in the optical-absorption edge of silicon,” Phys. Rev. 7(2), 733739 (1973).
10.R. Hulthén, “Optical constants of epitaxial silicon in the region 1-3.3 eV,” Phys. Scr. 12(6), 342344 (1975).
11.D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free carrier absorption in silicon,” IEEE J. Solid-St. Circ. 13(1), 180187 (1978).
12.K. G. Svantesson and N. G. Nilsson, “Determination of the temperature dependence of the free carrier and interband absorption in silicon at 1,06 μm,” J. Phys. C: Solid State Phys. 12, 38373842 (1979).
13.H. A. Weakliem and D. Redfield, “Temperature dependence of the optical properties of silicon,” J. Appl. Phys. 50(3), 14911493 (1979).
14.P. E. Schmidt, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23(10), 55315536 (1981).
15.G. E. Jellison and F. A. Modine, “Optical functions of silicon between 1.7 and 4.7 eV at elevated temperatures,” Phys. Rev. B 27, 74667472 (1983).
16.D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 9851009 (1983).
17.Edward S. Nartowitz and Alvin M. Goodman, “Evaluation of silicon optical absorption data for use in minority-carrier-diffusion-length measurements by the spv method,” J. Electrochem. Soc. 132(12), 29922997 (1985).
18.J. Geist, A. Migdall, and H. P. Baltes, “Analytic representation of the silicon absorption coefficient in the indirect transition region,” Applied Optics 27(18), 37773779 (1988).
19.G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Optical Materials 1, 4147 (1991).
20.A. Oschlies, R. W. Godby, and R. J. Needs, “First-principles self-energy calculations of carrier-induced band-gap narrowing in silicon,” Phys. Rev. B 45(23), 1374113744 (1992).
21.J. M. Essick and R. T. Mather, “Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment,” Am. J. Phys. 61(7), 646649 (1993).
22.E. Daub, “Photolumineszenz von Silizium,” PhD thesis, University of Karlsruhe, Germany,1995.
23.E. Daub and P. Würfel, “Ultralow values of the absorption coefficient of Si obtained from luminescence,” Phys. Rev. Letters 74(6), 10201023 (1995).
24.M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt: Res. Appl. 3, 189192 (1995).
25.M.J. Keevers and M.A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66(2), 174176 (1995).
26.M. J. Keevers and M. A. Green, “Extended infrared response of silicon solar cells and the impurity photovoltaic effect,” Sol. Energ. Mat. Sol. C. 41(42), 195204 (1996).
27.A. Neisser and M.A. Green, “Very low absorption coefficients of silicon at low temperatures from spectral response measurements,” in Proc. 2nd WPVSC, Vienna, Austria (1998) pp. 136139.
28.A. Neisser, “Spectral response measurements on silicon solar cells in the range of 1 ev to 5 ev photon energy at different temperatures,” Master’s thesis, Technische Universität Berlin, Germany, 1998.
29.J. Geist, Handbook Of Optical Constants Of Solids III (Academic Press, 1998).
30.C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 33233336 (1998).
31.T. Trupke, E. Daub, and P. Würfel, “Absorptivity of silicon solar cells obtained from luminescence,” Sol. Energ. Mat. Sol. C. 53, 103114 (1998).
32.M.A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energ. Mat. Sol. C. 92, 13051310 (2008).
33.T. R. Harris, “Optical Properties Of Si, Ge, GaAs, GaSb, InAs, And InP at Elevated Temperatures,” PhD thesis, Air Force Institute Of Technology, Ohio, USA, 2010.
34.C. Schinke, K. Bothe, P. C. Peest, J. Schmidt, and R. Brendel, “Uncertainty of the coefficient of band-to-band absorption of crystalline silicon at near-infrared wavelengths,” Appl. Phys. Lett. 104(081915), (2014).
35.H. T. Nguyen, F. E. Rougieux, B. Mitchell, and D. Macdonald, “Temperature dependence of the band-band absorption coefficient in crystalline silicon from photoluminescence,” J. Appl. Phys. 115, 043710 (2014).
36.S. C. Baker-Finch, K. R. McIntosh, D. Yan, K. C. Fong, and T. C. Kho, “Near-infrared free carrier absorption in heavily doped silicon,” J. Appl. Phys. 116(063106), (2014).
37.Joint Committee for Guides in Metrology, Guide to the expression of uncertainty in measurement (BIPM, Paris, 2008).
38.H. G. Tompkins, Handbook of Ellipsometry (William Andrew, Inc, 2005).
39.I. N. Bronstein and K. A. Semendjaev, Taschenbuch der Mathematik (Verlag Harri Deutsch, 2001).
40.P. Würfel, T. Trupke, and T. Puzzer, “Diffusion lenghts of silicon solar cells from luminescence images,” J. Appl. Phys. 101 (2007).
41.D. Hinken, K. Bothe, K. Ramspeck, S. Herlufsen, and R. Brendel, “Determination of the effective diffusion length of silicon solar cells from photoluminescence,” J. Appl. Phys. 105(10), 104516 (2009).
42.C. Schinke, D. Hinken, J. Schmidt, K. Bothe, and R. Brendel, “Modeling the spectral luminescence emission of silicon solar cells and wafers,” IEEE J. Photovolt. 3(3), 10381052 (2013).
43.P. Würfel, “Generalized planck’s radiation law for luminescence via indirect transitions,” Appl. Phys. A 60, 6770 (1995).
44.U. Rau, “Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells,” Phys. Rev. B 76 (2007).
45.Joint Committee for Guides in Metrology, International vocabulary of metrology - Basic and general concepts and associated terms (VIM) (BIPM, Paris, 2008).
46.W. Wöger, “Remarks on the en-criterion used in measurement comparisons,” PTB-Mitteilungen 109, 2427 (1999).
47.J. A. Woollam Co, Guide to using WVASE32 (J. A. Woollam Co., Inc, 2010).
48.J.H. Mazur, R. Gronsky, and J. Washburn, “High resolution electron microscopy studies of native oxide on silicon,” in Proc. 3rd Oxford Conferenceon Microscopy of Semiconducting Materials, (1983) pp. 7782.
49.G. E. Jellison, Jr., and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371373 (1996).
50.J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Stat. Sol. 15, 627637 (1966).
51.P. C. Peest, C. Schinke, K. Bothe, and R. Brendel, to be published.
52.C. Schinke, “Uncertainty of the Coefficient of Band-to-Band Absorption of Crystalline Silicon,” PhD thesis, Leibniz University of Hanover, Germany, 2015, to be submitted.
53.S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proc. 16th EUPVSEC, Glasgow, Great Britain (2000) pp. 21982201.
54.S. Winter, “Analyse und Verbesserung der rückführbaren Kalibrierung von Solarzellen,” PhD thesis,Technische Universität Carolo-Wilhelmina, Braunschweig, Germany, 2004.
55.M. Schmelling, “Averaging measurements with hidden correlations and asymmetric errors,” Technical Report 1 (Max-Planck Institute for Nuclear Physics, Heidelberg, Germany,2000).
56.M.A. Green, Silicon Solar Cells - Advanced Priciples and Practice (University of New South Wales, 1995).
57.R. Brendel, M. Hirsch, R. Plieninger, and J.H. Werner, “Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement,” IEEE T. Electron Dev. 43, 11041113 (1996), doi:10.1109/16.502422.
58.See supplemental material at for tabulated data of the absorption coefficient as determined in this work.[Supplementary Material]
59.B. Mitchell, M.K. Juhl, M.A. Green, and T. Trupke, “Full spectrum photoluminescence lifetime analyses on silicon bricks,” IEEE J. Photovolt. 3(3), 962969 (2013) ISSN 2156-3381.
60.C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. Nguyen, and D. MacDonald, “Experimental determination of the uncertainty of the absorption coefficient of crystalline silicon,” in Proc. 5th SiliconPV, Konstance, Germany (2015) Accepted.

Data & Media loading...


Article metrics loading...



We analyze the uncertainty of the coefficient of band-to-band absorption of crystalline silicon. For this purpose, we determine the absorption coefficient at room temperature (295 K) in the wavelength range from 250 to 1450 nm using four different measurement methods. The data presented in this work derive from spectroscopic ellipsometry, measurements of reflectance and transmittance, spectrally resolved luminescence measurements and spectral responsivity measurements. A systematic measurement uncertainty analysis based on the (GUM) as well as an extensive characterization of the measurement setups are carried out for all methods. We determine relative uncertainties of the absorption coefficient of 0.4% at 250 nm, 11% at 600 nm, 1.4% at 1000 nm, 12% at 1200 nm and 180% at 1450 nm. The data are consolidated by intercomparison of results obtained at different institutions and using different measurement approaches.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd