Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
2.A. R. Ranjbartoreh, B. Wang, X. Shen, and G. Wang, J. Appl. Phys. 109, 014306 (2011).
3.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
4.X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).
5.W. Wang, X. Qin, N. Xu, and Z. Li, J. Appl. Phys. 109, 044304 (2011).
6.J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
7.V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, J. Appl. Phys. 107, 054505 (2010).
8.I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Nature Nanotech. 3, 654 (2008).
9.Y. –W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
10.X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
11.L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008).
12.Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, Nanoscale 3, 1477 (2011).
13.Y. Zhou and K. P. Loh, Adv. Mater. 22, 3615 (2010).
14.J. Bai, X. Duan, and Y. Huang, Nano Lett. 9, 2083 (2009).
15.C. X. Cong, T. Yu, Z. H. Ni, L. Liu, Z. X. Shen, and W. Huang, J. Phys. Chem. C 113, 6529 (2009).
16.X. Liang, Z. Fu, and S. Y. Chou, Nano lett. 7, 3840 (2007).
17.M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L. M. Chen, K. S. Nelson, C. Zhou, R. B. Kaner, and Y. Yang, Adv. Mater. 21, 2098 (2009).
18.D. C. Bell, M. C. Lemme, L. A. Stern, J. R. Williams, and C. M. Marcus, Nanotechnology 20, 455301 (2009).
19.L. Scipioni, L. Stern, and J. Notte, Microsc. Today 14, 24 (2006).
20.B. Prével, J. M. Benoit, L. Bardotti, P. Mélinon, A. M. Sato, A. Ouerghi, D. Lucot, E. Bourhis, and J. Gierak, Microelectronic Engineering 98, 206 (2012).
21.B. Prével, J. M. Benoit, L. Bardotti, P. Mélinon, A. M. Sato, A. Ouerghi, D. Lucot, E. Bourhis, and J. Gierak, Appl. Phys. Lett. 99, 083116 (2011).
22.K. Xiao, H. Wu, H. Lv, X. Wu, and H. Qian, Nanoscale 5, 5524 (2013).
23.L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, and H. M. Cheng, Nat. Commun. 3, 699 (2012).
24.J. F. Ziegler,
25.J. F. Ziegler, J. Appl. Phys/Rev. Appl. Phys. 85, 1249 (1999).
26.M. P. Allen and D. J. Tildesley, Computer Simulation of liquids (Oxford University Press, Oxford, 1989), pp. 71-108.
27.S. Plimpton, J. Comput. Phys. 117, 1 (1995).
28.S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).
29.X. Wu, H. Zhao, M. Zhong, H. Murakawa, and M. Tsukamoto, Carbon 66, 31 (2014).
30.R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science 330, 946 (2010).
31.J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).
32.Z. Ong and E. Pop, Phys. Rev. B 81, 155408 (2010).
33.O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund, and J. Keinonen, Phys. Rev. B 81, 153401 (2010).
34.S. Mathew, T. K. Chan, D. Zhan, K. Gopinadhan, A. R. Barman, M. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, and J. T. L. Thong, Carbon 49, 1720 (2011).
35.A. V. Krasheninnikov, K. Nordlund, and J. Keinonen, Phys. Rev. B 65, 165423 (2002).
36.W. S. Yun, J. Kim, K. H. Park, J. S. Ha, Y. J. Ko, K. Park, S. K. Kim, Y. –J. Doh, H. –J. Lee, J. –P. Salvetat, and L. Forro, J. Vac. Sci. Technol. A 18, 1329 (2000).
37.F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Phys. Rev. Lett. 99, 126805 (2007).
38.T. C. Nguyen, M. Otani, and S. Okada, Phys. Rev. Lett. 106, 106801 (2011).
39.F. Moscatelli, A. Scorzoni, A. Poggi, M. Bruzzi, S. Sciortino, S. Lagomarsino, G. Wagner, I. Mandic, and R. Nipoti, IEEE Trans. Nucl. Sci. 53, 1557 (2006).
40.D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009).

Data & Media loading...


Article metrics loading...



In this paper, the physical phenomena of gallium (Ga+) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga+ ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga+ ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm2. Afterwards, the focused ion beam over 21.6 ion/nm2 is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd