Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Linder and K. Halterman, Physical Review B 90(10), 9 (2014);
1.P. Lazic, G. M. Sipahi, R. K. Kawakami, and I. Zutic, Physical Review B 90(8), 15 (2014);
1.P. A. Bobbert, Science 345(6203), 1450 (2014).
2.H. Tetlow and M. Gradhand, Physical Review B 87(7), 5 (2013);
2.J. Konig and M. Oestreich, Physica Status Solidi B-Basic Solid State Physics 251(9), 1651 (2014).
3.J. Basset, A. Sharma, Z. Wei, J. Bass, and M. Tsoi, P Soc Photo-Opt Ins 7036, 3605 (2008);
3.E. V. Gomonay and V. M. Loktev, Low Temp Phys+ 40(1), 17 (2014);
3.Y. A. Soh and R. K. Kummamuru, Philos T R Soc A 369(1951), 3646 (2011).
4.J. K. Furdyna, Journal of Applied Physics 64(4), R29 (1988).
5.T. Fukumura, Z. W. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Applied Physics Letters 75(21), 3366 (1999).
6.H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Applied Physics Letters 69(3), 363 (1996);
6.K. Hamaya, T. Watanabe, T. Taniyama, A. Oiwa, Y. Kitamoto, and Y. Yamazaki, Physical Review B 74(4), 5 (2006).
7.K. C. Ku, S. J. Potashnik, R. F. Wang, S. H. Chun, P. Schiffer, N. Samarth, M. J. Seong, A. Mascarenhas, E. Johnston-Halperin, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Applied Physics Letters 82(14), 2302 (2003);
7.T. Jungwirth, K. Y. Wang, J. Masek, K. W. Edmonds, J. Konig, J. Sinova, M. Polini, N. A. Goncharuk, A. H. MacDonald, M. Sawicki, A. W. Rushforth, R. P. Campion, L. X. Zhao, C. T. Foxon, and B. L. Gallagher, Physical Review B 72(16), 13 (2005).
8.Y. J. Zhang, T. Guo, Y. D. Luo, Y. H. Lin, and C. W. Nan, J Am Ceram Soc 96(2), 361 (2013);
8.J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng, and J. Ding, Physical Review Letters 104(13), 4 (2010);
8.C. Liu, F. Yun, and H. Morkoc, Journal of Materials Science-Materials in Electronics 16(9), 555 (2005).
9.Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291(5505), 854 (2001);
9.K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and K. M. Krishnan, Physical Review Letters 94(15), 4 (2005);
9.L. A. Errico, M. Renteria, and M. Weissmann, Physical Review B 72(18), 8 (2005).
10.G. A. Sawatzky and J. W. Allen, Physical Review Letters 53(24), 2339 (1984).
11.C. M. Osburn and R. W. Vest, Journal of Physics and Chemistry of Solids 32(6), 1343 (1971);
11.C. M. Osburn and R. W. Vest, Journal of Physics and Chemistry of Solids 32(6), 1331 (1971).
12.H. Kwon, H. Y. Lee, and J. Y. Lee, Journal of Nanoscience and Nanotechnology 14(5), 3473 (2014);
12.W. L. Jang, Y. M. Lu, W. S. Hwang, and W. C. Chen, J Eur Ceram Soc 30(2), 503 (2010).
13.W. L. Roth, J Appl Phys 31(11), 2000 (1960).
14.Y. H. Lin, B. Zhan, C. W. Nan, R. J. Zhao, X. Xu, and M. Kobayashi, Journal of Applied Physics 110(4), 4 (2011).
15.J. H. Pixley, A. Shashi, and A. H. Nevidomskyy, Phys Rev B 90(21), (2014);
15.H. Shinaoka, Y. Tomita, and Y. Motome, Phys Rev B 90(16), (2014).
16.G. N. Daptary, C. Sow, P. S. A. Kumar, and A. Bid, Phys Rev B 90(11), (2014).
17.K. Chakrabarti, B. Dalal, V. D. Ashok, K. Das, S. S. Chaudhuri, and S. K. De, J Phys D Appl Phys 47(32), (2014);
17.Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu, and H. Tajima, Physica B 329, 862 (2003).
18.Y. J. Zhang, Y. D. Luo, Y. H. Lin, and C. W. Nan, Applied Physics Letters 104(7), 3 (2014).
19.W. L. Roth, Phys Rev 110(6), 1333 (1958).
20.J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat Mater 4(2), 173 (2005);
20.M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, and J. M. D. Coey, Phys Rev Lett 93(17), (2004).

Data & Media loading...


Article metrics loading...



Antiferromagnetic materials attract a great amount of attention recently for promising antiferromagnet-based spintronics applications. NiO is a conventional antiferromagnetic semiconductor material and can show ferromagnetism by doping other magnetic elements. In this work, we synthesized epitaxial Fe-doped NiO thin films on SrTiO substrates with various crystal orientations by pulsed laser deposition. The room-temperature ferromagnetism of these films is anisotropic, including the saturated magnetization and the coercive field. The anisotropic magnetic behaviors of Fe-doped NiO diluted magnetic oxide system should be closely correlated to the magnetic structure of antiferromagnetic NiO base. Within the easy plane of NiO, the coercive field of the films becomes smaller, and larger coercive field while tested out of the easy plane of NiO. The saturated magnetization anisotropy is due to different strain applied by different substrates. These results lead us to more abundant knowledge of the exchange interactions in this conventional antiferromagnetic system.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd