Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4926399
1.
1.V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
2.
2.J. B. Pendry, Phys. Rev. Lett. 85, 03966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
3.
3.X. Zhang and Z. Liu, Nat. Mat. 7, 435 (2008).
http://dx.doi.org/10.1038/nmat2141
4.
4.N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
http://dx.doi.org/10.1126/science.1108759
5.
5.S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).
http://dx.doi.org/10.1080/09500340308235215
6.
6.F. Mesa, M. J. Freire, R. Marquès, and J. D. Baena, Phys. Rev. B 72, 235117 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.235117
7.
7.M. C. K. Wiltshire, Phys. Status Solidi B 244 (2005).
8.
8.A. Grbic and G. V. Eleftheriades, Phys. Rev. Lett. 92, 117403 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.117403
9.
9.T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, Science 313, 1595 (2006).
http://dx.doi.org/10.1126/science.1131025
10.
10.R. Merlin, Science 317, 927 (2007).
http://dx.doi.org/10.1126/science.1143884
11.
11.S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S. Y. Yang, C. -H. Yang, M. T. Wenzel, R. Jacob, H. -G. von Ribbeck, M. Helm, X. Zhang, L. M. Esh, and R. Ramesh, Opt. Mater. Express 1, 1051 (2011).
http://dx.doi.org/10.1364/OME.1.001051
12.
12.P. Li and T. Taubner, Opt. Express 20, 11787 (2012).
http://dx.doi.org/10.1364/OE.20.011787
13.
13.H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. H. Teng, Nano Lett. 12, 1549 (2012).
http://dx.doi.org/10.1021/nl2044088
14.
14.S. Maslovski, S. Tretyakov, and P. Alitalo, J. Appl. Phys. 96, 1293 (2004).
http://dx.doi.org/10.1063/1.1765865
15.
15.S. I. Maslovski and S. A. Tretyakov, J. Appl. Phys. 94, 4241 (2003).
http://dx.doi.org/10.1063/1.1604935
16.
16.S. I. Maslovski, Opt. Commun. 285, 3363 (2012).
http://dx.doi.org/10.1016/j.optcom.2011.12.079
17.
17.S. I. Maslovski and S. A. Tretyakov, New J. Phys. 14, 035007 (2012).
http://dx.doi.org/10.1088/1367-2630/14/3/035007
18.
18.G. W. Hanson, J. Appl. Phys. 104, 084314 (2008).
http://dx.doi.org/10.1063/1.3005881
19.
19.B. Wang, Z. Xiang, Y. Xiaocong, and T. Jinghua, Appl. Phys. Lett. 100, 131111 (2012).
http://dx.doi.org/10.1063/1.3698133
20.
20.G. W. Hanson, J. Appl. Phys. 103, 064302 (2008).
http://dx.doi.org/10.1063/1.2891452
21.
21.A. Vakil and N. Engheta, Science 332, 1291 (2011).
http://dx.doi.org/10.1126/science.1202691
22.
22.G. W. Hanson, A. B. Yakovlev, and A. Mafi, J. Appl. Phys. 110, 114305 (2011).
http://dx.doi.org/10.1063/1.3662883
23.
23.A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, Phys. Rev. B 86, 121108 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.121108
24.
24.T. Zhang, L. Chen, and X. Li, Opt. Express 21, 20888 (2013).
http://dx.doi.org/10.1364/OE.21.020888
25.
25.P. Li and T. Taubner, ACS Nano 6, 10107 (2012).
http://dx.doi.org/10.1021/nn303845a
26.
26.P. Ikonen, P. Belov, C. Simovski, and S. Maslovski, Phys. Rev. B 73, 073102 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.073102
27.
27.P. A. Belov and M. G. Silveirinha, Phys. Rev. E 73, 056607 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056607
28.
28.M. G. Silveirinha, P. A. Belov, and C. R. Simovski, Phys. Rev. B 75, 035108 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035108
29.
29.M. G. Silveirinha, P. A. Belov, and C. R. Simovski, Opt. let. 33, 1726 (2008).
http://dx.doi.org/10.1364/OL.33.001726
30.
30.P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, Appl. Phys. Lett. 89, 262109 (2006).
http://dx.doi.org/10.1063/1.2424557
31.
31.P. Y. Chen and A. Alù, ACS Nano 5, 5855 (2011).
http://dx.doi.org/10.1021/nn201622e
32.
32.Y. R. Padooru, A.B. Yakovlev, C. S. R. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, Phys. Rev. B 87, 115401 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115401
33.
33.C. S. Kaipa, A. B. Yakovlev, S. I. Maslovski, and M. G. Silveirinha, Phys. Rev. B 86, 155103 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.155103
34.
34.A. B. Yakovlev, Y. R. Padooru, G. W. Hanson, A. Mafi, and S. Karbasi, IEEE Trans. Microwave Theory Tech. 59, 527 (2011).
http://dx.doi.org/10.1109/TMTT.2010.2090358
35.
35.A. B. Yakovlev, Y. R. Padooru, S. Karbasi, G. W. Hanson, and A. Mafi, in IEEE AP-S Int. Symp. and URSI Radio Science Meeting, Toronto, ON, Canada (2010).
36.
36.B.D.F. Casse, W.T. Lu, Y.J. Huang, and S. Sridhar, Physics. Optics 1105 (2011).
37.
37.S. H. Jiang and R. Pike, New J. Phys. 7, 169 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/169
38.
38.P. Kolinko and D. Smith, Opt. Express 11, 640 (2003).
http://dx.doi.org/10.1364/OE.11.000640
39.
39.W. T. Lu and S. Sridhar, Microw. Opt. Tech. Lett. 39, 282 (2003).
http://dx.doi.org/10.1002/mop.11191
40.
40.X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, Opt. Express 16, 19686 (2008).
http://dx.doi.org/10.1364/OE.16.019686
41.
41.CST Microwave Studio 2014, CST GmbH http://www.cst.com.
42.
42.S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.02.034
43.
43.A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9(1), 30-35 (2008).
http://dx.doi.org/10.1021/nl801827v
44.
44.P. W. Sutter, J-I Flege, and E. A. Sutter, Nat. Mater. 7(5), 406-411 (2008).
http://dx.doi.org/10.1038/nmat2166
45.
45.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. Min Kim, K. S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
46.
46.J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, Nanoscale 4, 4883 (2012).
http://dx.doi.org/10.1039/c2nr30790a
47.
47.J-Y. Hong and J. Jang, J. of Mat. Chem. 22, 8179 (2012).
http://dx.doi.org/10.1039/c2jm00102k
48.
48.W. Xiong, Y. S. Zhou, W. J. Hou, L. J. Jiang, Y. Gao, L. S. Fan, L. Jiang, J. F. Silvain, and Y. F. Lu, Scientific reports 4 (2014).
49.
49.J. B. Park, W. Xiong, Y. Gao, M. Qian, Z. Q. Xie, M. Mitchell, Y. S. Zhou, G. H. Han, L. Jiang, and Y. F. Lu, Appl. Phys. Lett. 98, 123109 (2011).
http://dx.doi.org/10.1063/1.3569720
50.
50.P. Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, New. J. Phys. 15, 123029 (2013).
http://dx.doi.org/10.1088/1367-2630/15/12/123029
51.
51.M. G. Silveirinha, IEEE Trans. Antennas Propag. 54, 1766 (2006).
http://dx.doi.org/10.1109/TAP.2006.875920
52.
52.M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, New J. Phys. 10, 053011 (2008).
http://dx.doi.org/10.1088/1367-2630/10/5/053011
53.
53.O. Luukkonen, M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, IEEE Trans. Microwave Theory Tech. 57, 2692 (2009).
http://dx.doi.org/10.1109/TMTT.2009.2032458
54.
54.A. B. Yakovlev, M. G. Silveirinha, O. Luukkonen, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, IEEE Trans. Microwave Theory Tech. 57, 2700 (2009).
http://dx.doi.org/10.1109/TMTT.2009.2031933
55.
55.M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, IEEE Trans. Antennas Propag. 56, 405 (2008).
http://dx.doi.org/10.1109/TAP.2007.915442
56.
56.M. G. Silveirinha and C. A. Fernandes, IEEE Trans. Microwave Theory Tech. 53, 1418 (2005).
http://dx.doi.org/10.1109/TMTT.2005.845128
57.
57.A. Forouzmand, H. M. Bernety, and A. B. Yakovlev, Phys. Rev. B (2015) under review.
58.
58.L. Solymar and E. Shamonina, Waves in metamaterials (Oxford University Press, 2009).
59.
59.M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
60.
60.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102, 1045110453 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
61.
61.A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, J. of Phys. Chem. C 112(46), 17741-17744 (2008).
http://dx.doi.org/10.1021/jp807380s
62.
62.X. Li, F. Gao, and Z. Gu, Open Surf. Sci. J. 3, 91-104 (2011).
http://dx.doi.org/10.2174/1876531901103010091
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4926399
Loading
/content/aip/journal/adva/5/7/10.1063/1.4926399
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4926399
2015-07-02
2016-12-04

Abstract

In this paper, we demonstrate that a wire medium slab loaded with graphene-nanopatch metasurfaces (GNMs) enables the enhancement of evanescent waves for the subwavelength imaging at terahertz (THz) frequencies. The analysis is based on the nonlocal homogenization model for wire medium with the additional boundary condition at the connection of wires to graphene. The physical mechanism behind this lens can be described as the surface plasmons excitement at the lower and upper GNMs which are coupled by an array of metallic wires. The dual nature (capacitive/inductive) of the GNM is utilized in order to design a dual-band lens in which the unique controllable properties of graphene and the structural parameters of wire medium (WM) slab provide more degrees of freedom in controlling two operating frequency bands. The lens can support the subwavelength imaging simultaneously at two tunable distinct frequencies with the resolution better than λ/6 even if the distance between GNMs is a significant fraction of wavelength (>λ/5.5). The major future challenges in the fabrication of the lens have been demonstrated and a promising approach for the practical configuration of the lens has been proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4926399.html;jsessionid=LY_EO4VY2afuaj9kL9drZzaf.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4926399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4926399&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4926399'
Right1,Right2,Right3,