Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. A. Soref, Proc. IEEE 81, 1687 (1993).
2.M. El Kurdi, H. Bertin, E. Martincic, M. De Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96, 041909 (2010).
3.J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, Opt. Lett. 35, 679 (2010).
4.R. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, J. Mater. Res. 22, 3281 (2007).
5.S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Cousar, B. R. Conley, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Cousar, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, Appl. Phys. Lett. 105, 151109 (2014).
6.M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. A. Körner, M. Kittler, D. Buca, E. Kasper, and J. Schulze, IEEE Photonics Technol. Lett. 26, 187 (2014).
7.S. Wirths, R. Geiger, N. V. D. Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photonics 9, 88 (2015).
8.F. J. Guarin, S. S. Iyer, A. R. Powell, and B. A. Ek, Appl. Phys. Lett. 68, 3608 (1996).
9.A. S. T. Khan, P. R. Berger, F. J. Guarin, and S. S. Iyer, Appl. Phys. Lett. 68, 3105 (1995).
10.N. Wright, A. T. Khan, P. R. Berger, F. J. Guarin, and S. S. Iyer, MRS Proc. 533, 327 (1998).
11.R. V. S. Jensen, T. Garm Pedersen, and K. Pedersen, Phys. Status Solidi Curr. Top. Solid State Phys. 8, 1002 (2011).
12.D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, and F. Koch, Phys. Rev. Lett. 81, 2803 (1998).
13.C. Santori, D. Fattal, J. Vŭcković, G. S. Solomon, and Y. Yamamoto, Nature 419, 441 (2002).
14.M. F. Fyhn, J. Chevallier, A. N. Larsen, R. Feidenhans’l, and M. Seibt, Phys. Rev. B 60, 5770 (1999).
15.R. Ragan, K. S. Min, and H. A. Atwater, Mater. Sci. Eng. B 87, 204 (2001).
16.A. Karim, G. V. Hansson, W. X. Ni, P. O. Holtz, M. Larsson, and H. A. Atwater, Opt. Mater. (Amst) 27, 836 (2005).
17.A. A. Tonkikh, N. D. Zakharov, V. G. Talalaev, C. Eisenschmidt, J. Schilling, and P. Werner, J. Cryst. Growth 425, 172 (2015).
18.I. Arslan, T. J. V. Yates, N. D. Browning, and P. A. Midgley, Science 309, 2195 (2005).
19.P. I. Gaiduk, J. L. Hansen, A. N. Larsen, F. L. Bregolin, and W. Skorupa, Appl. Phys. Lett. 104, 231903 (2014).
20.B. Julsgaard, P. Balling, J. L. Hansen, A. Svane, and A. N. Larsen, Nanotechnology 22, 435401 (2011).
21.L. C. Feldman, J. W. Mayer, and S. T. A. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982).
22.P. Kringhøj and A. N. Larsen, Phys. Rev. B 56, 6396 (1997).
23.H.-J. Gossmann, P. Asoka-Kumar, T. C. Leung, B. Nielsen, K. G. Lynn, F. C. Unterwald, and L. C. Feldman, Appl. Phys. Lett. 61, 540 (1992).
24.M. Fanciulli, Phys. Rev. B 61, 2657 (2000).
25.F. A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).
26.C. Ridder, M. Fanciulli, A. N. Larsen, and G. Weyer, Mater. Sci. Semicond. Process. 3, 251 (2000).
27.R. W. Olesinski and G. J. Abbaschian, Bull. Alloy Phase Diagrams 5, 273 (1984).
28.N. A. Drozdov, A. A. Patrin, and V. D. Tkachev, JETP Lett. 23, 651 (1976).

Data & Media loading...


Article metrics loading...



Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of SiSnC, where = 1.6 % and = 0.04 % on a silicon substrate, followed by annealing at various temperatures ranging from 650 C to 900 C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ≈1017 cm−3 and ≈5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd