Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4926597
1.
1.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2.I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
3.
3.J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
http://dx.doi.org/10.1063/1.341700
4.
4.J. C. Egues, Phys. Rev. Lett. 80, 4578 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4578
5.
5.K. Chang and F. M. Peeters, Solid State Commun. 120, 181 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00370-2
6.
6.A. Slobodskyy, C. Gould, T. Slobodskyy, C. R. Becker, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. 90, 246601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.246601
7.
7.Z. G. Zhu and G. Su, Phys. Rev. B 70, 193310 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.193310
8.
8.G. Papp, S. Borza, and F. M. Peeters, J. Appl. Phys. 97, 113901 (2005).
http://dx.doi.org/10.1063/1.1861520
9.
9.N. N. Beletskii, G. P. Berman, and S. A. Borysenko, Phys. Rev. B 71, 125325 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125325
10.
10.K. Gnanasekar and K. Navaneethakrishnan, Europhys. Lett. 73, 786 (2006).
http://dx.doi.org/10.1209/epl/i2005-10456-8
11.
11.S. Borza, F. M. Peeters, P. Vasilopoulos, and G. Papp, J. Phys.: Condens. Matter 19, 176221 (2007).
http://dx.doi.org/10.1088/0953-8984/19/17/176221
12.
12.F. Zhai, Y. Guo, and B. L. Gu, J. Appl. Phys. 94, 5432 (2003).
http://dx.doi.org/10.1063/1.1611284
13.
13.P. Havu, N. Tuomisto, R. Väänänen, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 71, 235301 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235301
14.
14.S. Mnasri, S. A. B. Nasrallah, A. Bouazra, N. Sfina, and M. Said, J. Appl. Phys. 110, 034303 (2011).
http://dx.doi.org/10.1063/1.3610442
15.
15.Y. Ming, J. Gong, and R. Q. Zhang, J. Appl. Phys. 110, 093717 (2011).
http://dx.doi.org/10.1063/1.3658852
16.
16.P. Wójcik, J. Adamowski, M. Wołoszyn, and B. J. Spisak, Phys. Rev. B 86, 165318 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165318
17.
17.P. Wójcik, B. J. Spisak, M. Wołoszyn, and J. Adamowski, Semicond. Sci. Technol. 27, 115004 (2012).
http://dx.doi.org/10.1088/0268-1242/27/11/115004
18.
18.T. H. Gruber, M. Keim, R. Fiederling, G. Reuscher, W. Ossau, G. Schmidt, L. W. Molenkamp, and A. Waag, Appl. Phys. Lett. 78, 1101 (2001).
http://dx.doi.org/10.1063/1.1350600
19.
19.J. C. Egues, C. Gould, G. Richter, and L. W. Molenkamp, Phys. Rev. B 64, 195319 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195319
20.
20.G. Schmidt, G. Richter, P. Grabs, C. Gould, D. Ferrand, and L. W. Molenkamp, Phys. Rev. Lett. 87, 227203 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.227203
21.
21.G. Schmidt, C. Gould, P. Grabs, A. M. Lunde, G. Richter, A. Slobodskyy, and L. W. Molenkamp, Phys. Rev. Lett. 92, 226602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.226602
22.
22.A. C. H. Rowe and S. A. Solin, Phys. Rev. B 71, 235323 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235323
23.
23.D. M. Zayachuk, T. Slobodskyy, G. V. Astakhov, A. Slobodskyy, C. Gould, G. Schmidt, W. Ossau, and L. W. Molenkamp, Phys. Rev. B 83, 085308 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.085308
24.
24.M. Rüth, C. Gould, and L. W. Molenkamp, Phys. Rev. B 83, 155408 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155408
25.
25.Y. Guo, F. R. Shen, and X. Y. Chen, Appl. Phys. Lett. 101, 012410 (2012).
http://dx.doi.org/10.1063/1.4733668
26.
26.N. Dai, L. R. Ram-Mohan, H. Luo, G. L. Yang, F. C. Zhang, M. Dobrowolska, and J. K. Furdyna, Phys. Rev. B 50, 18153 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.18153
27.
27.W. Y. Yu, A. Twardowski, L. P. Fu, A. Petrou, and B. T. Jonker, Phys. Rev. B 51, 9722 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.9722
28.
28.B. König, U. Zehnder, D. R. Yakovlev, W. Ossau, T. Gerhard, M. Keim, A. Waag, and G. Landwehr, Phys. Rev. B 60, 2653 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2653
29.
29.Y. Guo, X. Y. Chen, F. Zhai, B. L. Gu, and Y. Kawazoe, Appl. Phys. Lett. 80, 4591 (2002).
http://dx.doi.org/10.1063/1.1485121
30.
30.D. Y. K. Ko and J. C. Inkson, Phys. Rev. B 38, 9945 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.9945
31.
31.C. Kittel and P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1976), Vol. 8.
32.
32.Y. Guo, H. Wang, B. L. Gu, and Y. Kawazoe, J. Appl. Phys. 88, 6614 (2000).
http://dx.doi.org/10.1063/1.1322070
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4926597
Loading
/content/aip/journal/adva/5/7/10.1063/1.4926597
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4926597
2015-07-08
2016-12-05

Abstract

We propose a spin selector based on periodic diluted-magnetic-semiconductor/nonmagnetic-barrier (DMS/NB) superlattices subjected to an external magnetic field. We find that the periodic DMS/NB superlattices can achieve 100% spin filtering over a dramatically broader range of incident energies than the diluted-magnetic-semiconductor/semiconductor (DMS/S) case studied previously. And the positions and widths of spin-filtering bands can be manipulated effectively by adjusting the geometric parameters of the system or the strength of external magnetic field. Such a compelling filtering feature stems from the introduction of nonmagnetic barrier and the spin-dependent giant Zeeman effect induced by the external magnetic field. We also find that the external electric field can exert a significant influence on the spin-polarized transport through the DMS/NB superlattices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4926597.html;jsessionid=7TLAtSUQ17nGXvV1lqwhLiw6.x-aip-live-03?itemId=/content/aip/journal/adva/5/7/10.1063/1.4926597&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4926597&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4926597'
Right1,Right2,Right3,