Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4926670
1.
1.D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 8, 1102 (2014).
http://dx.doi.org/10.1021/nn500064s
2.
2.A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
3.
3.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotech. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
4.
4.B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
http://dx.doi.org/10.1021/nn203715c
5.
5.O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).
http://dx.doi.org/10.1038/nnano.2013.100
6.
6.Y. Du, L. Yang, H. Liu, and P. D. Ye, APL Materials 2, 092510 (2014).
http://dx.doi.org/10.1063/1.4894198
7.
7.S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
http://dx.doi.org/10.1021/nl303583v
8.
8.H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye, ACS Nano 8, 1031 (2014).
http://dx.doi.org/10.1021/nn405916t
9.
9.U. Bhanu, M. R. Islam, L. Tetard, and S. I. Khondaker, Scientific Reports 4, 5575 (2014).
http://dx.doi.org/10.1038/srep05575
10.
10.S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Leotin, and J. Lou, ACS Nano 8, 12682 (2014).
http://dx.doi.org/10.1021/nn5056942
11.
11.Y. Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim, S. Shi, J. Wu, A. Zettl, and F. Wang, Nano Lett. 14, 5329 (2014).
http://dx.doi.org/10.1021/nl5023767
12.
12.C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, X. Xu, and Y. J. Chabal, ACS Nano 7, 11350 (2013).
http://dx.doi.org/10.1021/nn4052138
13.
13.Jae-Ung Lee, J. Park, Young-Woo Son, and H. Cheong, Nanoscale 7, 3229 (2015).
http://dx.doi.org/10.1039/C4NR05785F
14.
14.R. Shuker and R. W. Gammon, Phys. Rev. Lett. 25, 222 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.222
15.
15.N. T. McDevitt, J. S. Zabinski, M. S. Donley, and J. E. Bultman, Appl. Spectr. 48, 788 (1994).
http://dx.doi.org/10.1366/0003702944029910
16.
16.K. Golasa, M. Grzeszczyk, K.P. Korona, R. Bozek, J. Binder, J. Szczytko, A. Wysmolek, and A. Babinski, Acta Phys. Pol. A 124, 849 (2013).
http://dx.doi.org/10.12693/APhysPolA.124.849
17.
17.W. S. Bacsa, J. S. Lannin, D. L. Pappas, and J. J. Cuomo, Phys. Rev. B 47, 10931 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.10931
18.
18.F. Li, N. Lustig, P. Klosowski, and J. S. Lannin, Phys. Rev. B 41, 10210 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.10210
19.
19.F. Li and J. S. Lannin, Phys. Rev. B 39, 6220 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.6220
20.
20.N. Maley and J. S. Lannin, Phys. Rev. B 35, 2456 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.2456
21.
21.C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
http://dx.doi.org/10.1021/nn1003937
22.
22.G. L. Frey, R. Tenne, M. J. Matthiews, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 60, 2883 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2883
23.
23.K. Golasa, M. Grzeszczyk, P. Leszczynski, C. Faugeras, A. A. L. Nicolet, A. Wysmolek, M. Potemski, and A. Babinski, Appl. Phys. Lett. 104, 092106 (2014).
http://dx.doi.org/10.1063/1.4867502
24.
24.K. Golasa, M. Grzeszczyk, R. Bozek, P. Leszczynski, A. Wysmolek, M. Potemski, and A. Babinski, Solid State Comm. 197, 53 (2014).
http://dx.doi.org/10.1016/j.ssc.2014.08.009
25.
25.T. Livneh and J.E. Spanier, arXiv:1408.6748.
26.
26.T. Sekine, K. Uchinokura, T. Nakashizu, E. Matsuura, and R. Yoshizaki, J. Phys. Soc. Jpn. 53, 811 (1984).
http://dx.doi.org/10.1143/JPSJ.53.811
27.
27.T. J. Wietling and J. L Verble, Phys. Rev. B 3, 4286 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.4286
28.
28.A. Molina-Sanchez and L. Wirtz, Phys. Rev. B 84, 155413 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155413
29.
29.The peak at ≈ 300 cm−1 is related to the Si substrate.
30.
30.K. Uozumi, Journal of Microscopy 152, 193 (1988).
http://dx.doi.org/10.1111/j.1365-2818.1988.tb01378.x
31.
31.A. Taube, J. Judek, C. Jastrzebski, A. Lapinska, and M. Zdrojek, ACS Appl. Mater. Interfaces 7, 5061 (2015).
http://dx.doi.org/10.1021/acsami.5b00690
32.
32.H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, Nano Lett. 13, 3626 (2013).
http://dx.doi.org/10.1021/nl4014748
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4926670
Loading
/content/aip/journal/adva/5/7/10.1063/1.4926670
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4926670
2015-07-13
2016-12-03

Abstract

The Raman scattering has been studied in heterostructures composed of a thin MoS flake and a 1-1.5 nm layer of thermally evaporated gold (Au). There have been Au nanoislands detected in the heterostructure. It has been found that their surface density and the average size depend on the MoS thickness. The Raman scattering spectrum in the heterostructure with a few monolayer MoS only weakly depends on the excitation (resonant vs. non-resonant) mode. The overall Raman spectrum corresponds to the total density of phonon states, which is characteristic for disordered systems. The disorder in the MoS layer is related to the mechanical strain induced in the MoS layer by the Au nanoislands. The strain results in the localization of phonon modes, which leads to the relaxation of the momentum conservation rule in the scattering process. The relaxation allows phonons from the whole MoS Brillouin zone to interact with electronic excitations. Our results show that the Au nanoislands resulted from thermal evaporation of a thin metal layer introduce substantial disorder into the crystalline structure of the thin MoS layers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4926670.html;jsessionid=Qt_mJ2u_EAf4jGp2X-nqR0TD.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4926670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4926670&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4926670'
Right1,Right2,Right3,