Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Reports on Progress in Physics 75, 076502 (2012).
2.R. Waser and M. Aono, Nat Mater 6, 833 (2007) 10.1038/nmat2023.
3.S. Rahaman, S. Maikap, H. Chiu, C. Lin, T. Y. Wu, Y. S. Chen, P. J. Tzeng, F. Chen, M. J. Kao, and M. J. Tsai, in Memory Workshop, 2009. IMW ’09. IEEE International (2009) pp. 14.
4.M. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova, in Non-Volatile Memory Technology Symposium, 2005 (2005) pp. 8389.
5.M. Meier, S. Gilles, R. Rosezin, C. Schindler, S. Trellenkamp, A. Rüdiger, D. Mayer, C. Kügeler, and R. Waser, Microelectronic Engineering 86, 1060 (2009).
6.C. Schindler, S. Thermadam, R. Waser, and M. Kozicki, Electron Devices, IEEE Transactions on 54, 2762 (2007).
7.R. Rosezin, E. Linn, L. Nielen, C. Kugeler, R. Bruchhaus, and R. Waser, Electron Device Letters, IEEE 32, 191 (2011).
8.W. Lee, J. Park, M. Son, J. Lee, S. Jung, S. Kim, S. Park, J. Shin, and H. Hwang, Electron Device Letters, IEEE 32, 680 (2010).
9.L. Zhong, P. Reed, R. Huang, C. de Groot, and L. Jiang, Solid-State Electronics 94, 98 (2014).
10.L. Zhong, P. Reed, R. Huang, C. de Groot, and L. Jiang, Microelectronic Engineering 119, 61 (2014).
11.L. Zhong, L. Jiang, R. Huang, and C. H. de Groot, Applied Physics Letters 104, 093507 (2014).
12.W. Lee, M. Siddik, S. Jung, J. Park, S. Kim, J. Shin, J. Lee, S. Park, M. Son, and H. Hwang, Electron Device Letters, IEEE 32, 1573 (2011).
13.D. Ielmini, Electron Devices, IEEE Transactions on 58, 4309 (2011).
14.A. De Girolamo Del Mauro, G. Nenna, R. Miscioscia, C. Freda, S. Portofino, S. Galvagno, and C. Minarini, Langmuir 30, 12421 (2014).
15.K. Strauss and T. Daud, in Aerospace Conference Proceedings, 2000 IEEE, (2000) Vol.5, pp. 399408.
16.D. Fleetwood, F. Thome, S. Tsao, P. Dressendorfer, V. Dandini, and J. Schwank, Nuclear Science, IEEE Transactions on 35, 1099 (1988).
17.M. Pyun, H. Choi, J.-B. Park, D. Lee, M. Hasan, R. Dong, S.-J. Jung, J. Lee, D.-j. Seong, J. Yoon, and H. Hwang, Applied Physics Letters 93, 212907 (2008).
18.M. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, Nanotechnology, IEEE Transactions on 5, 535 (2006).
19.H. Xie, J. Wang, T. Xi, and Y. Liu, International Journal of Thermophysics 23, 571 (2002).
20.S. Ambrogio, S. Balatti, D. Gilmer, and D. Ielmini, Electron Devices, IEEE Transactions on 61, 2378 (2014).
21.D. Ielmini, F. Nardi, and C. Cagli, Electron Devices, IEEE Transactions on 58, 3246 (2011).
22.D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, Applied Physics Letters 88, 202102 (2006).
23.U. Russo, D. Ielmini, C. Cagli, A. Lacaita, S. Spiga, C. Wiemer, M. Perego, and M. Fanciulli, in Electron Devices Meeting, 2007. IEDM 2007. IEEE International (2007) pp. 775778.
24.J. Lloyd, M. Lane, and E. Liniger, in Integrated Reliability Workshop Final Report, 2002. IEEE International (2002) pp. 3235.
25.S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Kao, and M. J. Tsai, Applied Physics Letters 101, 073106 (2012).
26.K. Morgan, R. Huang, K. Potter, C. Shaw, W. Redman-White, and C. De Groot, Nuclear Science, IEEE Transactions on 61, 2991 (2014).
27.R. Fang, Y. Gonzalez Velo, W. Chen, K. E. Holbert, M. N. Kozicki, H. Barnaby, and S. Yu, Applied Physics Letters 104, 183507 (2014).
28.P. Dandamudi, H. Barnaby, M. Kozicki, Y. Gonzalez-Velo, and K. Holbert, in RADECS, 2013 14th European Conference on (2013) pp. 14.
29.H. J. Barnaby, M. Mclain, and I. S. Esqueda, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261, 1142 (2007).

Data & Media loading...


Article metrics loading...



Cu/a-SiC/Au resistive memory cells are measured using voltage pulses and exhibit the highest R/R ratio recorded for any resistive memory. The switching kinetics are investigated and fitted to a numerical model, using thermal conductivity and resistivity properties of the dielectric. The SET mechanism of the Cu/a-SiC/Au memory cells is found to be due to ionic motion without joule heating contributions, whereas the RESET mechanism is found to be due to thermally assisted ionic motion. The conductive filament diameter is extracted to be around 4nm. The high thermal conductivity and resistivity for the Cu/a-SiC/Au memory cells result in slow switching but with high thermal reliability and stability, showing potential for use in harsh environments. Radiation properties of SiC memory cells are investigated. No change was seen in DC sweep or pulsed switching nor in conductive mechanisms, up to 2Mrad(Si) using 60Co gamma irradiation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd