Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4926674
1.
1.D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Reports on Progress in Physics 75, 076502 (2012).
http://dx.doi.org/10.1088/0034-4885/75/7/076502
2.
2.R. Waser and M. Aono, Nat Mater 6, 833 (2007) 10.1038/nmat2023.
http://dx.doi.org/10.1038/nmat2023
3.
3.S. Rahaman, S. Maikap, H. Chiu, C. Lin, T. Y. Wu, Y. S. Chen, P. J. Tzeng, F. Chen, M. J. Kao, and M. J. Tsai, in Memory Workshop, 2009. IMW ’09. IEEE International (2009) pp. 14.
http://dx.doi.org/10.1109/IMW.2009.5090597
4.
4.M. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova, in Non-Volatile Memory Technology Symposium, 2005 (2005) pp. 8389.
http://dx.doi.org/10.1109/NVMT.2005.1541405
5.
5.M. Meier, S. Gilles, R. Rosezin, C. Schindler, S. Trellenkamp, A. Rüdiger, D. Mayer, C. Kügeler, and R. Waser, Microelectronic Engineering 86, 1060 (2009).
http://dx.doi.org/10.1016/j.mee.2009.01.054
6.
6.C. Schindler, S. Thermadam, R. Waser, and M. Kozicki, Electron Devices, IEEE Transactions on 54, 2762 (2007).
http://dx.doi.org/10.1109/TED.2007.904402
7.
7.R. Rosezin, E. Linn, L. Nielen, C. Kugeler, R. Bruchhaus, and R. Waser, Electron Device Letters, IEEE 32, 191 (2011).
http://dx.doi.org/10.1109/LED.2010.2090127
8.
8.W. Lee, J. Park, M. Son, J. Lee, S. Jung, S. Kim, S. Park, J. Shin, and H. Hwang, Electron Device Letters, IEEE 32, 680 (2010).
http://dx.doi.org/10.1109/LED.2011.2119370
9.
9.L. Zhong, P. Reed, R. Huang, C. de Groot, and L. Jiang, Solid-State Electronics 94, 98 (2014).
http://dx.doi.org/10.1016/j.sse.2014.02.013
10.
10.L. Zhong, P. Reed, R. Huang, C. de Groot, and L. Jiang, Microelectronic Engineering 119, 61 (2014).
http://dx.doi.org/10.1016/j.mee.2014.02.004
11.
11.L. Zhong, L. Jiang, R. Huang, and C. H. de Groot, Applied Physics Letters 104, 093507 (2014).
http://dx.doi.org/10.1063/1.4867198
12.
12.W. Lee, M. Siddik, S. Jung, J. Park, S. Kim, J. Shin, J. Lee, S. Park, M. Son, and H. Hwang, Electron Device Letters, IEEE 32, 1573 (2011).
http://dx.doi.org/10.1109/LED.2011.2163614
13.
13.D. Ielmini, Electron Devices, IEEE Transactions on 58, 4309 (2011).
http://dx.doi.org/10.1109/TED.2011.2167513
14.
14.A. De Girolamo Del Mauro, G. Nenna, R. Miscioscia, C. Freda, S. Portofino, S. Galvagno, and C. Minarini, Langmuir 30, 12421 (2014).
http://dx.doi.org/10.1021/la503060v
15.
15.K. Strauss and T. Daud, in Aerospace Conference Proceedings, 2000 IEEE, (2000) Vol.5, pp. 399408.
http://dx.doi.org/10.1109/AERO.2000.878514
16.
16.D. Fleetwood, F. Thome, S. Tsao, P. Dressendorfer, V. Dandini, and J. Schwank, Nuclear Science, IEEE Transactions on 35, 1099 (1988).
http://dx.doi.org/10.1109/23.7506
17.
17.M. Pyun, H. Choi, J.-B. Park, D. Lee, M. Hasan, R. Dong, S.-J. Jung, J. Lee, D.-j. Seong, J. Yoon, and H. Hwang, Applied Physics Letters 93, 212907 (2008).
http://dx.doi.org/10.1063/1.3039064
18.
18.M. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, Nanotechnology, IEEE Transactions on 5, 535 (2006).
http://dx.doi.org/10.1109/TNANO.2006.880407
19.
19.H. Xie, J. Wang, T. Xi, and Y. Liu, International Journal of Thermophysics 23, 571 (2002).
http://dx.doi.org/10.1023/A:1015121805842
20.
20.S. Ambrogio, S. Balatti, D. Gilmer, and D. Ielmini, Electron Devices, IEEE Transactions on 61, 2378 (2014).
http://dx.doi.org/10.1109/TED.2014.2325531
21.
21.D. Ielmini, F. Nardi, and C. Cagli, Electron Devices, IEEE Transactions on 58, 3246 (2011).
http://dx.doi.org/10.1109/TED.2011.2161088
22.
22.D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, Applied Physics Letters 88, 202102 (2006).
http://dx.doi.org/10.1063/1.2204649
23.
23.U. Russo, D. Ielmini, C. Cagli, A. Lacaita, S. Spiga, C. Wiemer, M. Perego, and M. Fanciulli, in Electron Devices Meeting, 2007. IEDM 2007. IEEE International (2007) pp. 775778.
http://dx.doi.org/10.1109/IEDM.2007.4419062
24.
24.J. Lloyd, M. Lane, and E. Liniger, in Integrated Reliability Workshop Final Report, 2002. IEEE International (2002) pp. 3235.
http://dx.doi.org/10.1109/IRWS.2002.1194228
25.
25.S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Kao, and M. J. Tsai, Applied Physics Letters 101, 073106 (2012).
http://dx.doi.org/10.1063/1.4745783
26.
26.K. Morgan, R. Huang, K. Potter, C. Shaw, W. Redman-White, and C. De Groot, Nuclear Science, IEEE Transactions on 61, 2991 (2014).
http://dx.doi.org/10.1109/TNS.2014.2365058
27.
27.R. Fang, Y. Gonzalez Velo, W. Chen, K. E. Holbert, M. N. Kozicki, H. Barnaby, and S. Yu, Applied Physics Letters 104, 183507 (2014).
http://dx.doi.org/10.1063/1.4875748
28.
28.P. Dandamudi, H. Barnaby, M. Kozicki, Y. Gonzalez-Velo, and K. Holbert, in RADECS, 2013 14th European Conference on (2013) pp. 14.
29.
29.H. J. Barnaby, M. Mclain, and I. S. Esqueda, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261, 1142 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.03.109
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4926674
Loading
/content/aip/journal/adva/5/7/10.1063/1.4926674
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4926674
2015-07-09
2016-12-11

Abstract

Cu/a-SiC/Au resistive memory cells are measured using voltage pulses and exhibit the highest R/R ratio recorded for any resistive memory. The switching kinetics are investigated and fitted to a numerical model, using thermal conductivity and resistivity properties of the dielectric. The SET mechanism of the Cu/a-SiC/Au memory cells is found to be due to ionic motion without joule heating contributions, whereas the RESET mechanism is found to be due to thermally assisted ionic motion. The conductive filament diameter is extracted to be around 4nm. The high thermal conductivity and resistivity for the Cu/a-SiC/Au memory cells result in slow switching but with high thermal reliability and stability, showing potential for use in harsh environments. Radiation properties of SiC memory cells are investigated. No change was seen in DC sweep or pulsed switching nor in conductive mechanisms, up to 2Mrad(Si) using 60Co gamma irradiation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4926674.html;jsessionid=IAfIfGqqp0xP_-1DJdWIuRm6.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4926674&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4926674&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4926674'
Right1,Right2,Right3,