Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4926813
1.
1.A. A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).
http://dx.doi.org/10.1007/s10853-005-5915-7
2.
2.K. Hirota, S. Wakimoto, and D. E. Cox, J. Phys. Soc. Jpn. 75, 111006 (2006).
http://dx.doi.org/10.1143/JPSJ.75.111006
3.
3.A. Gruverman and A. Kholkin, Rep. Prog. Phys. 69, 2443 (2006).
http://dx.doi.org/10.1088/0034-4885/69/8/R04
4.
4.L. E. Cross, Ferroelectrics 76, 241 (1987).
http://dx.doi.org/10.1080/00150198708016945
5.
5.Z.-G. Ye, Key Eng. Mater. 155, 81 (1998).
http://dx.doi.org/10.4028/www.scientific.net/KEM.155-156.81
6.
6.D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).
http://dx.doi.org/10.1063/1.346425
7.
7.R. Pirc and R. Blinc, Phys. Rev. B 60, 13470 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.13470
8.
8.S. Tinte, B. P. Burton, E. Cockayne, and U. V. Waghmare, Phys. Rev.Lett. 97, 137601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.137601
9.
9.I.-W. Chen, P. Li, and Y. Wang, J. Phys. Chem. Solids 57, 1525 (1996).
http://dx.doi.org/10.1016/0022-3697(95)00086-0
10.
10.I.-W. Chen, J. Phys. Chem. Solids 61, 197 (2000).
http://dx.doi.org/10.1016/S0022-3697(99)00282-6
11.
11.P. K. Davies and M. A. Akbas, J. Phys. Chem. Solids 61, 159 (2000).
http://dx.doi.org/10.1016/S0022-3697(99)00275-9
12.
12.P.-E. Janolin, B. Dkhil, P. Bouvier, J. Kreisel, and P. A. Thomas, Phys. Rev. B 73, 094128 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094128
13.
13.H. Taniguchi, M. Itoh, and D. Fu, J. Raman Spectrosc. 42, 706 (2011).
http://dx.doi.org/10.1002/jrs.2746
14.
14.D. La-Orauttapong, B. Noheda, Z.-G. Ye, P. M. Gehring, J. Toulouse, D. E. Cox, and G. Shirane, Phys. Rev. B 65, 144101 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144101
15.
15.K. K. Mishra, V. Sivasubramanian, R. M. Sarguna, T. R. Ravindran, and A. K. Arora, J. Solid State Chem. 184, 2381 (2011).
http://dx.doi.org/10.1016/j.jssc.2011.07.014
16.
16.K. K. Mishra, V. Sivasubramanian, and A. K. Arora, J. Raman Spectrosc. 42, 517 (2011).
http://dx.doi.org/10.1002/jrs.2706
17.
17.K. K. Mishra, A. T. Satya, A. Bharathi, V. Sivasubramanian, V. R. K. Murthy, and A. K. Arora, J. Appl. Phys. 110, 123529 (2011).
http://dx.doi.org/10.1063/1.3673240
18.
18.N. K. Karan, R. S. Katiyar, T. Maiti, R. Guo, and A. S. Bhalla, J. Raman Spectrosc. 40, 370 (2009).
http://dx.doi.org/10.1002/jrs.2134
19.
19.P. S. Dobal, A. Dixit, and R. S. Katiyar, J. Appl. Phys. 89, 8085 (2001).
http://dx.doi.org/10.1063/1.1369399
20.
20.K. K. Mishra, A. K. Arora, S. N. Tripathy, and Dillip Pradhan, J. Appl. Phys. 112, 073521 (2012).
http://dx.doi.org/10.1063/1.4757958
21.
21.K. K. Mishra, V. Sivasubramanian, A. K. Arora, and Dillip Pradhan, J. Appl. Phys. 112, 114109 (2012).
http://dx.doi.org/10.1063/1.4768441
22.
22.J. Toulouse, F. Jiang, O. Svitelskiy, W. Chen, and Z.-G. Ye, Phys. Rev. B 72, 184106 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.184106
23.
23.B. Maier, B. Mihailova, C. Paulmann, J. Ihringer, M. Gospodinov, R. Stosch, B. Guttler, and U. Bismayer, Phys. Rev. B 79, 224108 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224108
24.
24.I. A. Kornev, L. Bellaiche, P. Bouvier, P.-E. Janolin, B. Dkhil, and J. Kreisel, Phys. Rev. Lett. 95, 196804 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.196804
25.
25.N. Waeselmann, B. J. Maier, B. Mihailova, R. J. Angel, J. Zhao, M. Gospodinov, C. Paulmann, N. Ross, and U. Bismayer, Phys. Rev. B 85, 014106 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.014106
26.
26.B. J. Maier, A.-M. Welsch, R. J. Angel, B. Mihailova, J. Zhao, J. M. Engel, L. A. Schmitt, C. Paulmann, M. Gospodinov, A. Friedrich, and U. Bismayer, Phys. Rev. B 81, 174116 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.174116
27.
27.B. J. Maier, N. Waeselmann, B. Mihailova, R. J. Angel, C. Ederer, C. Paulmann, M. Gospodinov, A. Friedrich, and U. Bismayer, Phys. Rev. B 84, 174104 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.174104
28.
28.A.-M. Welsch, B. J. Maier, B. Mihailova, R. J. Angel, J. Zhao, C. Paul-mann, J. M. Engel, M. Gospodinov, V. Marinova, and U. Bismayer, Z. Kristallogr. 226, 126 (2011).
http://dx.doi.org/10.1524/zkri.2011.1324
29.
29.X. Long, A. A. Bokov, Z.-G. Ye, W. Qu, and X. Tan, J. Phys.: Condens.Matter 20, 015210 (2008).
http://dx.doi.org/10.1088/0953-8984/20/01/015210
30.
30.X. Zhao, W. Qu, X. Tan, A. A. Bokov, and Z.-G. Ye, Phys. Rev. B 79, 144101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.144101
31.
31.S. Kamba, D. Nuzhnyy, S. Velijko, V. Bovtun, J. Petzelt, Y. L. Wang, N. Setter, J. Levoska, M. Tyunina, J. Macutkevic, and J. Banys, J. Appl. Phys. 102, 074106 (2007).
http://dx.doi.org/10.1063/1.2784972
32.
32.B. Chaabane, J. Kreisel, P. Bouvier, G. Lucazeau, and B. Dkhil, Phys. Rev. B 70, 134114 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.134114
33.
33.A. Slodczyk, P. Daniel, and A. Kania, Phys. Rev. B 77, 184114 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.184114
34.
34.P. S. Dobal, A. Dixit, and R. S. Katiyar, J. Appl. Phys. 89, 8085 (2001).
http://dx.doi.org/10.1063/1.1369399
35.
35.C. Chemarin, N. Rosman, T. Pagnier, and G. Lucazeau, J. Solid State Chem. 149, 298 (2000).
http://dx.doi.org/10.1006/jssc.1999.8530
36.
36.S. M. Cho and H. M. Jang, Appl. Phys. Lett. 76, 3014 (2000).
http://dx.doi.org/10.1063/1.126563
37.
37.G. A. Samara, E. L. Venturini, and V. Hugo Schmidt, Appl Phys. Lett. 76, 1327 (2000).
http://dx.doi.org/10.1063/1.126024
38.
38.G. A. Samara and E. L. Venturini, Phase Transitions 79, 21 (2006).
http://dx.doi.org/10.1080/01411590500418331
39.
39.Muhtar Ahart, Ronald E. Cohen, Viktor Struzhkin, Eugene Gregoryanz, Daniel Rytz, Sergey A. Prosandeev, Ho-kwang Mao, and Russell J. Hemley, Phys. Rev. B 71, 144102 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.144102
40.
40.N. Waeselmann, B. Mihailova, B. J. Maier, C. Paulmann, M. Gospodinov, V. Marinova, and U. Bismayer, Phys. Rev. B 83, 214104 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.214104
41.
41.S. A. Prosandeev, E. Cockayne, B. P. Burton, S. Kamba, J. Petzelt, Y. Yuzyuk, R. S. Katiyar, and S. B. Vakhrushev, Phys. Rev. B 70, 134110 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.134110
42.
42.B. Chaabane, J. Kreisel, B. Dkhil, P. Bouvier, and M. Mezouar, Phy. Rev. Lett. 90, 257601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.257601
43.
43.S. Trujillo, J. Kreisel, Q. Jiang, J. H. Smith, P. A. Thomas, P. Bouvier, and F. Weiss, J. Phys. Condens. Matter 17, 6587 (2005).
http://dx.doi.org/10.1088/0953-8984/17/41/027
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4926813
Loading
/content/aip/journal/adva/5/7/10.1063/1.4926813
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4926813
2015-07-10
2016-12-09

Abstract

Raman spectroscopic measurements have been carried out at high pressure up to 33 GPa using a diamond anvil cell to investigate the structural transitions in relaxor ferroelectric 0.85Pb(Zn Nb )O-0.15PbTiO. Raman modes are found to be broad due to substitutional disorder at the -site of the perovskite. Evolution of spectra with pressure gives evidence for structural instabilities around 2.2, 6.3, and 14.6 GPa. New modes at 343 and 376 cm−1 appear across the transition at 6.3 GPa, characteristic of the high pressure antiferrodistortive rhombohedral phase (PII). The pressure dependence of mode frequency, width of the Raman bands, and integrated intensity of structurally sensitive A(TO) mode at 272 cm−1 are obtained; their effect on polar ordering and structural transitions are discussed. The disappearance of the mode around 200 cm−1 and the appearance of a new one around 120 cm−1 are evident around 14.6 GPa, and these are attributed to a possible new phase PIII. The reported pressure-induced suppression of diffuse x-ray scattering on Pb-based relaxors is consistent with the observed Raman features.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4926813.html;jsessionid=4-lCvcmujXjeoaqGLmyWketZ.x-aip-live-06?itemId=/content/aip/journal/adva/5/7/10.1063/1.4926813&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4926813&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4926813'
Right1,Right2,Right3,