Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. X. Zhu, L. W. Guo, J. J. Lin, W. C. Hao, J. Shang, Y. P. Jia, L. L. Chen, S. F. Jin, W. J. Wang, and X. L. Chen, Appl. Phys. Lett. 100, 023113 (2012).
2.J. Zhang, L. Z. Liu, L. Yang, Z. X. Gan, X. L. Wu, and P. K. Chu, Appl. Phys. Lett. 104, 231902 (2014).
3.C. Fan, Q. Yue, J. H. Yang, Z. M. Wei, S. X. Yang, and J. B. Li, Appl. Phys. Lett. 104, 202105 (2014).
4.H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M. Y. Li, and L. J. Li, Appl. Phys. Lett. 105, 201905 (2014).
5.H. R. Liang and L. J. Guo, Int. J. Hydrogen Energy 35, 7104 (2010).
6.P. D. Tran, M. Nguyen, S. S. Pramana, A. Bhattacharjee, S. Y. Chiam, J. Fize, M. J. Field, V. Artero, L. H. Wong, J. Loo, and J. Barber, Energy Environ. Sci. 5, 8912 (2012).
7.N. Li, M. Liu, Z. Zhou, J. Zhou, Y. Sun, and L. Guo, Nanoscale 6, 9695 (2014).
8.K. Gołasa, M. Grzeszczyk, R. Bożek, P. Leszczyński, A. Wysmołek, M. Potemski, and A. Babiński, Solid State Commun. 197, 53 (2014).
9.Li-Yong Gan and Udo Schwingenschlogl, Phy. Rev. B 89, 125423 (2014).
10.X. M. Zhou, J. Y. Lan, G. Liu, K. Deng, Y. L. Yang, G. J. Nie, J. G. Yu, and L. J. Zhi, Angew. Chem. Int. Ed. 124, 182 (2012).
11.J. G. Yu, J. X. Low, W. Xiao, P. Zhou, and M. Jaroniec, J. Am. Chem. Soc. 136, 8839 (2014).
12.Y. Shang, D. Sun, Y. M. Shao, D. F. Zhang, L. Guo, and S. H. Yang, Chem. Eur. J. 18, 14261 (2012).
13.W. Chen, H. Chen, H. Zhu, Q. Gao, J. Luo, Y. Wang, S. Zhang, K. Zhang, C. Wang, Y. Xiong, Y. Wu, X. Zheng, W. Chu, L. Song, and Z. Wu, Small 10(22), 4637 (2014).
14.Y. Liang, P. Liu, H. B. Li, and G. W. Yang, Cryst. Growth Des. 12, 4487 (2012).
15.C. Nasr, K. Vinodgopal, L. Fisher, S. Hotchandani, A. K. Chattopadhyay, and P.V. Kamat, J. Phys. Chem. 100, 8436 (1996).
16.W.S. Kuo and P. H. Ho, Dyes Pigments. 71, 212 (2006).
17.M. C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou, Y. F. Yue, V. N. Nesterov, G. D. Qian, and B. L. Chen, Chem. Commun. 47, 11715 (2011).
18.H. P. Chen, K. Zhang, W. X. Chen, I. Ali, P. Wu, D. B. Liu, and L. Song, AIP Advances 5, 037141 (2015).

Data & Media loading...


Article metrics loading...



Cube-like CuMoS nanoparticles with low-index facets and high crystallinity were fabricated via a hydrothermal method. The as-obtained nanocubes with an average size of 40-60 nm are composed of stacking-CuMoS layers separated by a weak Van der Waals gap of 0.5 nm. A strong absorption at visible light region is observed in the nanocube aqueous solution, indicating its optical-band gap of 1.78 eV. The photocatalytic measurements reveal that the nanocubes can thoroughly induce the degradation of methyl orange under visible light irradiation with good structural stability. Our finding may provide a way in design and fabrication of transition metal dichalcogenide nanostructures for practical applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd