Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927144
1.
1.J. J. Moverare, S. Johansson, and R. C. Reed, Acta Mater. 57, 2266 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.01.027
2.
2.R. W. Dickson, J. B. Wachtman, Jr., and S. M. Copley, J. Appl. Phys. 40, 2276 (1969).
http://dx.doi.org/10.1063/1.1657972
3.
3.S. Yu, C. Y. Wang, and T. Yu, Prog. Nat. Sci. Mater. 18, 861 (2008).
http://dx.doi.org/10.1016/j.pnsc.2008.01.029
4.
4.C. Y. Geng, C. Y. Wang, and T. Yu, Acta Mater. 52, 5427 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.08.007
5.
5.P. Gopal and S. G. Srinivasan, Phys. Rev. B 86, 014112 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.014112
6.
6.C. Jiang, D. J. Sordelet, and B. Gleeson, Acta Mater. 54, 1147 (2006).
http://dx.doi.org/10.1016/j.actamat.2005.10.039
7.
7.A. Mottura, M. W. Finnis, and R. C. Reed, Acta Mater. 60, 2866 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.01.051
8.
8.V. N. Ivanovski, B. Cekić, A. Umićević, J. Belošević-Čavor, G. Schumacher, V. Koteski, and T. Barudzija, J. Appl. Phys. 114, 063712 (2013).
http://dx.doi.org/10.1063/1.4818317
9.
9.D. Iotova, N. Kioussis, and S. P. Lim, Phys. Rev. B 54, 14413 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.14413
10.
10.R. Saniz, L.-H. Ye, T. Shishidou, and A. J. Freeman, Phys. Rev. B 74, 014209 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.014209
11.
11.B. I. Min, A. J. Freeman, and H. J. F. Jansen, Phys. Rev. B 37, 6757 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6757
12.
12.C. Y. Geng, C. Y. Wang, and T. Yu, Physica B 358, 314 (2005).
http://dx.doi.org/10.1016/j.physb.2005.01.467
13.
13.G. Y. Guo, Y. K. Wang, and L. S. Hsu, J. Magn. Magn. Mater. 239, 91 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)00564-9
14.
14.Y. J. Wang and C. Y. Wang, Mater. Sci. Eng. A 490, 242 (2008).
http://dx.doi.org/10.1016/j.msea.2008.01.023
15.
15.X. F. Gong, G. X. Yang, Y. H. Fu, Y.Q. Xie, J. Zhuang, and X. J. Ning, Comput. Mater. Sci. 47, 320 (2009).
http://dx.doi.org/10.1016/j.commatsci.2009.08.008
16.
16.T. Zhu, C. Y. Wang, and Y. Gan, Acta Mater. 58, 2045 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.11.047
17.
17.Y. Qawasmen and B. Hamad, J. Appl. Phys. 111, 033905 (2012).
http://dx.doi.org/10.1063/1.3681286
18.
18.V. Shah and D. G. Kanhere, Phys. Rev. B 80, 125419 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125419
19.
19.Y. J. Wang and C. Y. Wang, Scripta Mater. 61, 197 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2009.03.042
20.
20.S.Y. Wang, C.Y. Wang, J. H. Sun, W. H. Duan, and D. L. Zhao, Phys. Rev. B 65, 035101 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.035101
21.
21.D. E. Kim, S. L. Shang, and Z. K. Liu, Acta Mater. 60, 1846 (2012).
http://dx.doi.org/10.1016/j.actamat.2011.12.005
22.
22.H. Z. Fu, W. M. Peng, and T. Gao, Mater. Chem. Phys. 115, 789 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2009.02.031
23.
23.H. Hou, Z. Q. Wen, Y. H. Zhao, L. Fu, N. Wang, and P. Han, Intermetallics 44, 110 (2014).
http://dx.doi.org/10.1016/j.intermet.2013.09.003
24.
24.S. Boucettal, T. Chihi, B. Ghebouli, and M. Fatmi, Mater. Sci-Poland 28, 237 (2010).
25.
25.S. V. Raju, A. A. Oni, B. K. Godwal, J. Yan, V. Drozd, S. Srinivasan, J. M. Lebeau, K. Rajan, and S. K. Saxena, J. Alloys Compd. 619, 616 (2015).
http://dx.doi.org/10.1016/j.jallcom.2014.09.012
26.
26.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
27.
27.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
28.
28.S. L. Shang, Y. Wang, and Z. K. Liu, Appl. Phys. Lett. 90, 101909 (2007).
http://dx.doi.org/10.1063/1.2711762
29.
29.R. Yu, J. Zhua, and H. Q. Yed, Comput. Phys. Commun. 181, 671 (2010).
http://dx.doi.org/10.1016/j.cpc.2009.11.017
30.
30.D. E. Kim, S. L. Shang, and Z. K. Liu, Comput. Mater. Sci. 47, 254 (2009).
http://dx.doi.org/10.1016/j.commatsci.2009.07.014
31.
31.Y. LePage and P. Saxe, Phys. Rev. B 65, 104104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.104104
32.
32.X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035105
33.
33.R Hill, Proc. Phys. Soc. A 65, 349 (1952).
http://dx.doi.org/10.1088/0370-1298/65/5/307
34.
34.A. V. dos Santos, Solid State Commun. 151, 187 (2011).
http://dx.doi.org/10.1016/j.ssc.2010.08.035
35.
35.Q. Wu and S. S. Li, Comput. Mater. Sci. 53, 436 (2012).
http://dx.doi.org/10.1016/j.commatsci.2011.09.016
36.
36.V. R. Manga, J. E. Saal, Y. Wang, V. H. Crespi, and Z. K. Liu, J. Appl. Phys. 108, 103509 (2010).
http://dx.doi.org/10.1063/1.3513988
37.
37.A. S. Hamid, A. Uedono, Zs. Major, T. D. Haynes, J. Laverock, M. A. Alam, S. B. Dugdale, and D. Fort, Phys. Rev. B 84, 235107 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235107
38.
38.R. Sot and K. J. Kurzydłowski, Mater. Sci-Poland 23, 587 (2005).
39.
39.D. E. Kim, S. L. Shang, and Z. K. Liu, Intermetallics 18, 1163 (2010).
http://dx.doi.org/10.1016/j.intermet.2010.02.024
40.
40.J. E. Osburn, M. J. Mehl, and B. M. Klein, Phys. Rev. B 43, 1805 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1805
41.
41.C. L. Wang, J. Q. Xu, X. H. Hu, D. Chen, H. B. Sun, and B. H. Yu, Int. J. Mod. Phys. B 25, 3623 (2011).
http://dx.doi.org/10.1142/S0217979211101685
42.
42.X. Y. Yang and W. Y. Hu, J. Appl. Phys. 115, 153507 (2014).
http://dx.doi.org/10.1063/1.4870235
43.
43.S. V. Prikhodko, J. D. Carnes, D. G. Isaak, H. Yang, and A. J. Ardell, Metall. Mater. Trans. A 30, 2403 (1999).
http://dx.doi.org/10.1007/s11661-999-0248-9
44.
44.Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054115
45.
45.S. F. Pugh, Philos. Mag. 45, 823 (1954).
http://dx.doi.org/10.1080/14786440808520496
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927144
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927144
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927144
2015-07-16
2016-09-29

Abstract

In this paper, the basic electronic structures and elastic properties of Ni Al doping with alloying elements (Re, Cr, and Mo) under different pressures have been investigated using first-principles calculations based on density functional theory. It is shown that both alloying elements and external applied pressure contribute positively to the elastic properties of Ni Al, and the configurations of the compounds remain almost unchanged. The calculated elastic constants and moduli increase linearly with the pressure increasing from 0 and 40 GPa. Among the alloying elements studied in the present work, Re exhibits the most significant effect compared with the other elements, showing its practical importance. Especially, if both alloying elements doping and pressure effects are considered simultaneously, which has not been considered previously, the studied compounds exhibit an even better elastic property than the simple superposition of the two influences. Such synergistic effect demonstrates promising applications of Ni-based single crystal superalloys in possible extreme mechanical environments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927144.html;jsessionid=dVj4_4viKchuEYI4yX7z_CV9.x-aip-live-06?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927144&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927144&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927144'
Right1,Right2,Right3,