Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927151
1.
1.P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.077401
2.
2.C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.043907
3.
3.R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, Phys. Rev. Lett. 105, 147601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.147601
4.
4.M. Schenk, M. Kruger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.257601
5.
5.M. Kruger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
http://dx.doi.org/10.1038/nature10196
6.
6.G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
http://dx.doi.org/10.1038/nature10878
7.
7.M. R. Bionta, B. Chalopin, J. P. Champeaux, S. Faure, A. Masseboeuf, P. Moretto-Capelle, and B. Chatel, J. Mod. Optic. 61, 833 (2014).
http://dx.doi.org/10.1080/09500340.2013.846432
8.
8.V. Schweikhard, A. Grubisic, T. A. Baker, and D. J. Nesbitt, J. Phys. Chem. C 115, 83 (2011).
http://dx.doi.org/10.1021/jp1075143
9.
9.A. Grubisic, V. Schweikhard, T. A. Baker, and D. J. Nesbitt, Acs Nano 7, 87 (2013).
http://dx.doi.org/10.1021/nn305194n
10.
10.P. Dombi, S. E. Irvine, P. Racz, M. Lenner, N. Kroo, G. Farkas, A. Mitrofanov, A. Baltuska, T. Fuji, F. Krausz, and A. Y. Elezzabi, Opt. Express 18, 24206 (2010).
http://dx.doi.org/10.1364/OE.18.024206
11.
11.S. M. Teichmann, P. Racz, M. F. Ciappina, J. A. Perez-Hernandez, A. Thai, J. Fekete, A. Y. Elezzabi, L. Veisz, J. Biegert, and P. Dombi, Sci. Rep. 5, 7584 (2015).
http://dx.doi.org/10.1038/srep07584
12.
12.P. Dombi, A. Horl, P. Racz, I. Marton, A. Trugler, J. R. Krenn, and U. Hohenester, Nano Lett. 13, 674 (2013).
http://dx.doi.org/10.1021/nl304365e
13.
13.P. M. Nagel, J. S. Robinson, B. D. Harteneck, T. Pfeifer, M. J. Abel, J. S. Prell, D. M. Neumark, R. A. Kaindl, and S. R. Leone, Chem. Phys. 414, 106 (2013).
http://dx.doi.org/10.1016/j.chemphys.2012.03.013
14.
14.P. D. Keathley, A. Sell, W. P. Putnam, S. Guerrera, L. Velasquez-Garcia, and F. X. Kartner, Ann. Phys. 525, 144 (2013).
http://dx.doi.org/10.1002/andp.201200189
15.
15.R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kartner, W. S. Graves, and K. K. Berggren, Acs Nano 8, 11474 (2014).
http://dx.doi.org/10.1021/nn504594g
16.
16.L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers, Nat. Phys. 10, 432 (2014).
http://dx.doi.org/10.1038/nphys2974
17.
17.M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schafer, and C. Ropers, Science 345, 200 (2014).
http://dx.doi.org/10.1126/science.1250658
18.
18.A. Mustonen, P. Beaud, E. Kirk, T. Feurer, and S. Tsujino, Appl. Phys. Lett. 99, 103504 (2011).
http://dx.doi.org/10.1063/1.3631634
19.
19.D. S. Yang, O. F. Mohammed, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 107, 14993 (2010).
http://dx.doi.org/10.1073/pnas.1009321107
20.
20.W. S. Graves, F. X. Kartner, D. E. Moncton, and P. Piot, Phys. Rev. Lett. 108, 263904 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.263904
21.
21.M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, Nature Photon. 1, 539 (2007).
http://dx.doi.org/10.1038/nphoton.2007.169
22.
22.H. Yanagisawa, M. Hengsberger, D. Leuenberger, M. Klockner, C. Hafner, T. Greber, and J. Osterwalder, Phys. Rev. Lett. 107, 087601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.087601
23.
23.D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, and C. Lienau, Phys. Rev. Lett. 109, 244803 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.244803
24.
24.G. Herink, L. Wimmer, and C. Ropers, New J .Phys. 16, 123005 (2014).
http://dx.doi.org/10.1088/1367-2630/16/12/123005
25.
25.R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, Opt. Express 16, 20295 (2008).
http://dx.doi.org/10.1364/OE.16.020295
26.
26.M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, Nature Photon. 3, 287 (2009).
http://dx.doi.org/10.1038/nphoton.2009.46
27.
27.M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Hober, Nature Photon. 8, 841 (2014).
http://dx.doi.org/10.1038/nphoton.2014.225
28.
28.F. Neubrech, D. Weber, R. Lovrincic, A. Pucci, M. Lopes, T. Toury, and M. L. de la Chapelle, Appl. Phys. Lett. 93, 163105 (2008).
http://dx.doi.org/10.1063/1.3003870
29.
29.F. Kusa and S. Ashihara, J. Appl. Phys. 116, 153103 (2014).
http://dx.doi.org/10.1063/1.4898316
30.
30.A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, Phys. Status. Solidi. B 247, 2071 (2010).
http://dx.doi.org/10.1002/pssb.200983933
31.
31.L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, J. Am. Chem. Soc. 135, 3688 (2013).
http://dx.doi.org/10.1021/ja312694g
32.
32.K. Chen, R. Adato, and H. Altug, Acs Nano 6, 7998 (2012).
http://dx.doi.org/10.1021/nn3026468
33.
33.N. Liu and H. Giessen, Angew. Chem. Int. Ed. 49, 9838 (2010).
http://dx.doi.org/10.1002/anie.200906211
34.
34.D. Diessel, M. Decker, S. Linden, and M. Wegener, Opt. Lett. 35, 3661 (2010).
http://dx.doi.org/10.1364/OL.35.003661
35.
35.R. Taubert, R. Ameling, T. Weiss, A. Christ, and H. Giessen, Nano Lett. 11, 4421 (2011).
http://dx.doi.org/10.1021/nl202606g
36.
36.P. Kruit and F. H. Read, J. Phys. E 16, 313 (1983).
http://dx.doi.org/10.1088/0022-3735/16/4/016
37.
37.C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).
http://dx.doi.org/10.1063/1.322600
38.
38.H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
39.
39.W. N. Hansen and K. B. Johnson, Surf. Sci. 316, 373 (1994).
http://dx.doi.org/10.1016/0039-6028(94)91229-7
40.
40.L. V. Keldysh, Sov. Phys. Jetp-Ussr. 20, 1307 (1965).
41.
41.G. G. Paulus, W. Becker, and H. Walther, Phys Rev A 52, 4043 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.4043
42.
42.J. Zuloaga and P. Nordlander, Nano Lett. 11, 1280 (2011).
http://dx.doi.org/10.1021/nl1043242
43.
43.P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, Phys. Rev. Lett. 110, 203902 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.203902
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927151
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927151
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927151
2015-07-16
2016-09-27

Abstract

We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927151.html;jsessionid=BnpBIz0U6QUgL8BIfMy2AA0z.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927151&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927151&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927151'
Right1,Right2,Right3,