Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.X. H. Du, J. Zheng, U. Belegundu, and K. Uchino, Appl. Phys. Lett. 72, 2421 (1998).
2.N. Ledermann, Sensor and Actuators A 105, 162 (2003).
3.D. G. Schlom, L. Q. Chen, C. B. Eom, K. M. Rabe, S. K. Streiffer, and J. M. Triscone, Annu. Rev. Mater. Res. 37, 589 (2007).
4.D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, Appl. Phys. Lett. 88, 142904 (2006).
5.T. Fujisawa, H. Nakaki1, R. Ikariyama1, T. Yamada, M. Ishikawa, H. Morioka, and H. Funakubo, J. Appl. Phys. 105, 061614 (2009).
6.C. B. Yeager and S. Trolier-McKinstry, J. Appl. Phys. 112, 074107 (2012).
7.V. Nagarajan, A. Stanishevski, L Chen, T. Zhao, T. T. Liu, J. Melngailis, A. L. Roytburd, and R. Ramesh, Appl. Phys. Lett. 81, 4215 (2002).
8.S. Yokoyama, Y. Honda, H. Morioka, S. Okamoto, H. Funakubo, T. Iijima, H. Matsuda, K. Saito, T. Yamamoto, H. Okino, O. Sakata, and S. Kimura, J. Appl. Phys. 98, 094106 (2005).
9.N. Setter, Piezoelectric Materials in Devices (Ceramics Laboratory, EPLF, Lausanne, 2002).
10.C. B. Eom and S. Trolier-McKinstry, MRS. Bull. 37, 1007 (2012).
11.M. Kim, S.-H. Kim, and S. Hong, Materials and Devices for MEMS Piezoelectric Energy Harvesting, in Advances in Energy Hervesting Method (Springer, New York, 2013), p. 417.
12.T. Hirai, K. Teramoto, K. Nagashima, H. Koike, S. Matsuno, S. Tanimoto, and Y. Tarui, Jpn. J. Appl. Phys. 35, 4016 (1996).
13.C. C. Yang, M.-S. Chen, T. J. Hong, C. M. Wu, J. M. Wu, and T. B. Wu, Appl. Phys. Lett. 66, 2643 (1995).
14.H. G. Yeo and S. Trolier-McKinstry, J. Appl. Phys. 116, 014105 (2014).
15.Y. Ebina, T. Sasaki, and M. Watanabe, Solid State Ionics 151, 177 (2002).
16.M. Osada and T. Sasaki, Adv. Mater. 24, 210 (2012).
17.T. Shibata, H. Takano, Y. Ebina, D. S. Kim, T. C. Ozawa, K. Akatsuka, T. Ohnishi, K. Takada, T. Kogure, and T. Sasaki, J. Mater. Chem. C 2, 441 (2014).
18.Y. Kondoh, K. Sasajima, M. Hayashi, J. Kimura, I. Takuma, Y. Ehara, H. Funakubo, and H. Uchida, Jpn. J. Appl. Phys. 50, 09NA04 (2011).
19.K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, J. Sol-Gel Sci. Technol. 42, 381 (2007).
20.M. Bayraktar, A. Chopra, F. Bijikerk, and G. Rijnders, Appl. Phys. Lett. 105, 132904 (2014).
21.Y. Minemura, K. Nagasaka, T. Kiguchi, T. J. Konno, H. Funakubo, and H. Uchida, Jpn. J. Appl. Phys. 52, 09KA04 (2013).
22.See supplementary material at for control experiment of solid-state reaction between PZT andns-CN using powder samples.[Supplementary Material]
23.J. Joseph, T. M. Vimala, V. Sivasubramanian, and V. R. K. Murthy, J. Mater. Sci. 35, 1571 (2000).
24.T. R. Taylor, P. J. Hansen, B. Acikel, N. Pervez, R. A. York, S. K. Streiffer, and J. S. Speck, Appl. Phys. Lett. 80, 1978 (2002).
25.M. Wei, A. J. Ruys, B. K. Milthorpe, C. C. Sorrell, and J. H. Evans, J. Sol-Gel Sci. Technol. 21, 39 (2001).

Data & Media loading...


Article metrics loading...



Lead zirconate titanate (PZT) film with polar axis orientation was grown on a SUS 316L stainless steel substrate with the help of a CaNbO nanosheet (-CN) layer that had a pseudo-perovskite-type crystal structure. The -CN buffer layer was supported on a platinized SUS 316L (Pt/SUS) substrate, followed by chemical solution deposition (CSD) of the PZT films with tetragonal symmetry (Zr/Ti =40/60). The PZT films consisting of -domain, with [001]-axis orientation of the perovskite unit cell, were deposited on the -CN/Pt/SUS substrate owing to (i) epitaxial lattice matching between the unit cell of PZT and substrate surface and (ii) in-plane thermal stress applied to the PZT film during cooling-down step of CSD procedure. The -domain-oriented PZT film on -CN/Pt/SUS substrate exhibited enhanced remanent polarization of approximately 52 μC/cm2 and lowered dielectric permittivity of approximately 230, which are superior to those of conventional PZT films with random crystal orientation and comparable to those of epitaxial PZT films grown on (100)SrRuO//(100)SrTiO substrates.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd