Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927389
1.
1.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2.A. K. Geim, Science 324, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
3.
3.A. Barth and W. Marx, arXiv:0808.3320 (2008).
4.
4.K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
http://dx.doi.org/10.1038/nature11458
5.
5.K. Tapan and P. Smita, International Journal of Chemical Sciences and Applications 4, 39 (2013).
6.
6.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
http://dx.doi.org/10.1021/nl0731872
7.
7.A. A. Balandin, Nat. Mater. 10, 569 (2011).
http://dx.doi.org/10.1038/nmat3064
8.
8.K. Tapas, B. Sambhu, Y. Dahu, H. K. Nam, B. Saswata, and H. L. Joong, Prog. Polym. Sci. 35, 1350 (2010).
http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005
9.
9.K. D. Tapan and P. Smita, Polym.-Plast. Technol. Eng. 52, 319 (2013).
http://dx.doi.org/10.1080/03602559.2012.751410
10.
10.H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules 43, 6515 (2010).
http://dx.doi.org/10.1021/ma100572e
11.
11.I. Ovid’ko, Rev.Adv.Mater.Sci. 34, 19 (2013).
12.
12.V. Goyal and A. A. Balandin, Appl. Phys. Lett. 100, 073113 (2012).
http://dx.doi.org/10.1063/1.3687173
13.
13.K. Chu and C. Jia, Phys. Status Solidi A 211, 184 (2014).
http://dx.doi.org/10.1002/pssa.201330051
14.
14.R. Gao, N. Hu, Z. Yang, Q. Zhu, J. Chai, Y. Su, L. Zhang, and Y. Zhang, Nanoscale Res. Lett. 8, 32 (2013).
http://dx.doi.org/10.1186/1556-276X-8-32
15.
15.K. Jagannadham, Metall. Mater. Trans. B 43, 316 (2012).
http://dx.doi.org/10.1007/s11663-011-9597-z
16.
16.H. Porwal, S. Grasso, and M. J. Reece, Adv. Appl. Ceram. 112, 443 (2013).
http://dx.doi.org/10.1179/174367613X13764308970581
17.
17.L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, ACS Nano 5, 3182 (2011).
http://dx.doi.org/10.1021/nn200319d
18.
18.Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han, Nat. Commun. 4 (2013).
http://dx.doi.org/10.1038/ncomms3114
19.
19.S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, Mater. Sci. Eng., A 528, 7933 (2011).
http://dx.doi.org/10.1038/ncomms3114
20.
20.C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997).
http://dx.doi.org/10.1063/1.365209
21.
21.J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science 328, 213 (2010).
http://dx.doi.org/10.1126/science.1184014
22.
22.W. Jang, W. Bao, L. Jing, C. N. Lau, and C. Dames, Appl. Phys. Lett. 103, 133102 (2013).
http://dx.doi.org/10.1063/1.4821941
23.
23.A. L. Moore and L. Shi, Mater. Today 17, 163 (2014).
http://dx.doi.org/10.1016/j.mattod.2014.04.003
24.
24.M. Harb, C. von Korff Schmising, H. Enquist, A. Jurgilaitis, I. Maximov, P. V. Shvets, A. N. Obraztsov, D. Khakhulin, M. Wulff, and J. Larsson, Appl. Phys. Lett. 101 (2012).
http://dx.doi.org/10.1063/1.4769214
25.
25.H. Zheng and K. Jaganandham, J. Heat Transfer 136, 061301 (2014).
http://dx.doi.org/10.1115/1.4026488
26.
26.K. Jagannadham, J. Appl. Phys. 110, 074901 (2011).
http://dx.doi.org/10.1063/1.3641640
27.
27.K. Jagannadham, J. Vac. Sci. Technol., A 32, 051101 (2014).
http://dx.doi.org/10.1116/1.4890576
28.
28.C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, J. Appl. Phys. 108, 123711 (2010).
http://dx.doi.org/10.1063/1.3524232
29.
29.S. W. Chang, A. K. Nair, and M. J. Buehler, J. Phys.: Condens. Matter 24, 245301 (2012).
http://dx.doi.org/10.1088/0953-8984/24/24/245301
30.
30.L. Chen, Z. Huang, and K. Satish, RSC Advances 4, 35852 (2014).
http://dx.doi.org/10.1039/C4RA03585B
31.
31.R. Mao, B. D. Kong, C. Gong, S. Xu, T. Jayasekera, K. Cho, and K. W. Kim, Phys. Rev. B 87, 165410 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.165410
32.
32.M. Shen, P. K. Schelling, and P. Keblinski, Phys. Rev. B 88, 045444 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.045444
33.
33.J. C. Duda, P. E. Hopkins, T. E. Beechem, J. L. Smoyer, and P. M. Norris, Superlattices Microstruct. 47, 550 (2010).
http://dx.doi.org/10.1016/j.spmi.2010.01.001
34.
34.M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 81, 081408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.081408
35.
35.L. Chen, Z. Huang, and S. Kumar, Appl. Phys. Lett. 103, 123110 (2013).
http://dx.doi.org/10.1063/1.4821439
36.
36.L. Adamska, Y. Lin, A. J. Ross, M. Batzill, and I. I. Oleynik, Phys. Rev. B 85, 195443 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195443
37.
37.Z. Xu and M. J. Buehler, J. Phys.: Condens. Matter 24, 475305 (2012).
http://dx.doi.org/10.1088/0953-8984/24/47/475305
38.
38.A. J. Schmidt, K. C. Collins, A. J. Minnich, and G. Chen, J. Appl. Phys. 107 (2010).
http://dx.doi.org/10.1063/1.3428464
39.
39.W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, Nano Lett. 10, 3909 (2010).
http://dx.doi.org/10.1021/nl101613u
40.
40.J. J. Gengler, S. V. Shenogin, J. E. Bultman, A. K. Roy, A. A. Voevodin, and C. Muratore, J. Appl. Phys. 112, 094904 (2012).
http://dx.doi.org/10.1063/1.4764006
41.
41.Y. K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, Nano Lett. 10, 4363 (2010).
http://dx.doi.org/10.1038/nmat2166
42.
42.K. F. Mak, C. H. Lui, and T. F. Heinz, Appl. Phys. Lett. 97, 221904 (2010).
http://dx.doi.org/10.1063/1.3511537
43.
43.G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, Phys. Rev. B 71, 075402 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.075402
44.
44.P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nat. Mater. 7, 406 (2008).
http://dx.doi.org/10.1038/nmat2166
45.
45.S. Marchini, S. Günther, and J. Wintterlin, Phys. Rev. B 76, 075429 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075429
46.
46.B. Uchoa, C.-Y. Lin, and A. H. Castro Neto, Phys. Rev. B 77, 035420 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.035420
47.
47.D. Eom, D. Prezzi, K. T. Rim, H. Zhou, M. Lefenfeld, S. Xiao, C. Nuckolls, M. S. Hybertsen, T. F. Heinz, and G. W. Flynn, Nano Lett. 9, 2844 (2009).
http://dx.doi.org/10.1021/nl900927f
48.
48.A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.157601
49.
49.A. Grüneis and D. V. Vyalikh, Phys. Rev. B 77, 193401 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.193401
50.
50.Q. J. Wang and J. G. Che, Phys. Rev. Lett. 103, 066802 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.066802
51.
51.G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026803
52.
52.F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997).
http://dx.doi.org/10.1063/1.473271
53.
53.S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
54.
54.A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
http://dx.doi.org/10.1088/0965-0393/18/1/015012
55.
55.Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.224106
56.
56.P. L. Williams, Y. Mishin, and J. C. Hamilton, Modell. Simul. Mater. Sci. Eng. 14, 817 (2006).
http://dx.doi.org/10.1088/0965-0393/14/5/002
57.
57.S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).
http://dx.doi.org/10.1063/1.481208
58.
58.Y. Guo and G. Wanlin, Nanotechnology 17, 4726 (2006).
http://dx.doi.org/10.1088/0957-4484/17/18/033
59.
59.M. Neek-Amal, R. Asgari, and M. R. R. Tabar, Nanotechnology 20, 135602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/13/135602
60.
60.R. Taylor, Philos. Mag. 13, 157 (1966).
http://dx.doi.org/10.1080/14786436608211993
61.
61.D. Chung, J. Mater. Sci. 37, 1475 (2002).
http://dx.doi.org/10.1023/A:1014915307738
62.
62.Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, Phys. Lett. A 375, 1195 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.01.025
63.
63.P. E. Hopkins, M. Baraket, E. V. Barnat, T. E. Beechem, S. P. Kearney, J. C. Duda, J. T. Robinson, and S. G. Walton, Nano Lett. 12, 590 (2012).
http://dx.doi.org/10.1021/nl203060j
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927389
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927389
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927389
2015-07-21
2016-12-03

Abstract

The paper presents the results of Molecular Dynamics (MD) studies of the thermal properties of Cu and Ag composites with single- (SLG) and multi-layered (MLG) graphene. We show that the thermal boundary conductance (TBC) of the metal-graphene interface drops significantly for the systems containing more than one layer of graphene. It is also concluded that the TBC for a single graphene layer is significantly higher for silver than for copper. For both systems, however, we found that the interface is a barrier for heat transfer with the thermal conductance being at least two orders of magnitude lower than for metal. Moreover, we found that the TBC decreases with an increase in the number of graphene layers. The interfacial effect becomes negligible for a thickness bigger than two graphene layers. Above this thickness the thermal conductivity of the region of multilayered graphene is not influenced by the interface and becomes similar to that of graphite. The results are compared with available experimental data and discussed in terms of the rules for designing composites of a high thermal conductivity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927389.html;jsessionid=VjMsLFcfUZMjJBPSPrv4mzvh.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927389&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927389&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927389'
Right1,Right2,Right3,