Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927399
1.
1.G. L. Matthaei, IEEE Trans. Microw. Theory Tech. 13, 203 (1965).
http://dx.doi.org/10.1109/TMTT.1965.1125965
2.
2.I. C. Hunter, L. Billonet, B. Jarry, and P. Guillon, IEEE Trans. Microw. Theory Tech. 50, 794 (2002).
http://dx.doi.org/10.1109/22.989963
3.
3.X. Yang, J. Wu, S. Beguhn, T. Nan, Y. Gao, Z. Zhou, and N. X. Sun, IEEE Microwave Wireless Compon. Lett. 23, 184 (2013).
http://dx.doi.org/10.1109/LMWC.2013.2247991
4.
4.A. Cismaru and R. Marcelli, IEEE Trans. Magn. 42, 10 (2006).
http://dx.doi.org/10.1109/TMAG.2006.879637
5.
5.G. Qiu, C. S. Tsai, B. S. T. Wang, and Y. Zhu, IEEE Trans. Magn. 44, 3123 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2002780
6.
6.X. Yang, Y. Gao, J. Wu, S. Beguhn, T. X. Nan, Z. Y. Zhou, M. Liu, and N. X. Sun, IEEE Trans. Magn. 49, 5485 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2266897
7.
7.B. K. Kuanr, D. L. Marvin, T. M. Christensen, R. E. Camley, and Z. Celinski, J. Appl. Phys. Lett. 87, 222506 (2005).
http://dx.doi.org/10.1063/1.2138364
8.
8.I. Harward, R. E. Camley, and Z. Celinski, Appl. Phys. Lett. 105, 173503 (2014).
http://dx.doi.org/10.1063/1.4900519
9.
9.Y. Guo, F. R. Shen, and X. Y. Chen, Appl. Phys. Lett. 101, 012410 (2012).
http://dx.doi.org/10.1063/1.4733668
10.
10.J. D. Adam, S. V. Krishnaswamy, S. H. Talisa, and K. C. Yoo, J. Magn. Magn. Mater. 83, 15235 (1990).
http://dx.doi.org/10.1016/0304-8853(90)90570-G
11.
11.R. A. Shelby, Science 292, 77 (2001).
http://dx.doi.org/10.1126/science.1058847
12.
12.K. Bi, J. Zhou, H. Zhao, X. Liu, and C. Lan, Opt. Express 21, 10746 (2013).
http://dx.doi.org/10.1364/OE.21.010746
13.
13.Y. He, P. He, V. G. Harris, and C. Vittoria, IEEE Trans. Magn. 42, 2852 (2006).
http://dx.doi.org/10.1109/TMAG.2006.879146
14.
14.G. Dewar, New J. Phys. 7, 161 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/161
15.
15.H. Zhao, J. Zhou, L. Kang, and Q. Zhao, Opt. Express 17, 13373 (2009).
http://dx.doi.org/10.1364/OE.17.013373
16.
16.U. Ebels, J. L. Duvail, P. E. Wigen, L. Piraux, L. D. Buda, and K. Ounadjela, Phys. Rev. B 64, 144421 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.144421
17.
17.L. P. Carignan, A. Yelon, D. Menard, and C. Caloz, IEEE Trans. Magn. 59, 10 (2011).
18.
18.N. Cramer, D. Lucic, R. E. Camley, and Z. Celinski, J. Appl. Phys. 87, 911 (2000).
http://dx.doi.org/10.1063/1.372883
19.
19.P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, J. Phys. D: Appl. Phys. 42, 155005 (2009).
http://dx.doi.org/10.1088/0022-3727/42/15/155005
20.
20.F. Xu, Y. Bai, F. Ai, L. Qiao, H. Zhao, and J. Zhou, J. Phys. D: Appl. Phys. 42, 065416 (2009).
http://dx.doi.org/10.1088/0022-3727/42/6/065416
21.
21.J. N. Gollub, J. Y. Chin, T. J. Cui, and D. R. Smith, Opt. Express 17, 2122 (2009).
http://dx.doi.org/10.1364/OE.17.002122
22.
22.K. Bi, W. Zhu, M. Lei, and J. Zhou, Appl. Phys. Lett. 106, 173507 (2015).
http://dx.doi.org/10.1063/1.4918992
23.
23.D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195104
24.
24.X. Chen, T. M. Grzegorczyk, B. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.016608
25.
25.C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, Phys. Rev. B 77, 125333 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125333
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927399
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927399
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927399
2015-07-21
2016-09-26

Abstract

Tunable wideband microwave bandstop filters have been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance frequency which can be influenced by the demagnetization factor of the ferrite rods. For the filter composed of two ferrite rods with different size, it exhibits a -3 db stop bandwidth as large as 500 MHz, peak absorption of -40 db and an out-of-stopband insertion loss of -1.5 db. This work provides a new way to fabricate the microwave bandstop filters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927399.html;jsessionid=_h9AJoA0xzsr8F9LYJ84FokH.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927399&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927399'
Right1,Right2,Right3,