Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927449
1.
1.M. Kumari, I. Pop, and G. Nath, “Transient MHD stagnation flow of a non-Newtonian fluid due to impulsive motion from rest,” Int. J. Non-Linear Mech. 45, 463-473 (2010).
http://dx.doi.org/10.1016/j.ijnonlinmec.2010.01.002
2.
2.M. Mustafa, T. Hayat, I. Pop, and A. Aziz, “Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate,” Heat Transf.-Asian Res. 40, 563-576 (2011).
http://dx.doi.org/10.1002/htj.20358
3.
3.M. Mustafa, T. Hayat, I. Pop, and S. Obaidat, “Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet,” Z. Naturforsch. 67a, 70-76 (2012).
4.
4.S. Mukhopadhyay, “Casson fluid flow and heat transfer over a nonlinearly stretching surface,” Chin. Phys. Lett. 22 (2013) doi: 10.1088/1674-1056/22/7/074701.
http://dx.doi.org/10.1088/1674-1056/22/7/074701
5.
5.S. Mukhopadhyay, K. Bhattacharyya, and T. Hayat, “Exact solutions for the flow of Casson fluid over a stretching surface with transpiration and heat transfer effects,” Chin. Phys. B 22 (2013) doi: 10.1088/1674-1056/22/11/114701.
http://dx.doi.org/10.1088/1674-1056/22/11/114701
6.
6.S. Nadeem, R. Ul Haq, and N. S. Akbar, “MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition,” IEEE Trans. Nanotech. 13 (2014) doi: 10.1109/TNANO.2013.2293735.
http://dx.doi.org/10.1109/TNANO.2013.2293735
7.
7.S. Nadeem, R. Mehmood, and N. S. Akbar, “Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions,” Int. J. Therm. Sci. 78, 90-100 (2014).
http://dx.doi.org/10.1016/j.ijthermalsci.2013.12.001
8.
8.A. Hussanan, M. Z. Salleh, R. M. Tahar, and I. Khan, “Unsteady boundary layer flow and heat transfer of a casson fluid past an oscillating vertical plate with newtonian heating,” PLoS ONE 9 (2014) doi:10.1371/journal.pone.0108763.
http://dx.doi.org/10.1371/journal.pone.0108763
9.
9.S. Mukhopadhyay and I. S. Mandal, “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux,” Chin. Phys. B 23 (2014) doi: 10.1088/1674-1056/23/4/044702.
http://dx.doi.org/10.1088/1674-1056/23/4/044702
10.
10.O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582-594 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
11.
11.K. V. Wong and O. D. Leon, “Applications of Nanofluids: Current and Future,” Advan. Mech. Engg. (2010) Article ID 519659.
12.
12.J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf. 128, 240250 (2006).
http://dx.doi.org/10.1115/1.2150834
13.
13.A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” Int. J. Therm. Sci. 49, 243-247 (2010).
http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.015
14.
14.D. A. Nield and A. V. Kuznetsov, “The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid,” Int. J. Heat Mass Transf. 52, 5792-5795 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.07.024
15.
15.W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf. 53, 2477-2483 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
16.
16.M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, “Stagnation-point flow of a nanofluid towards a stretching sheet,” Int. J. Heat Mass Transf. 54, 5588-5594 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.021
17.
17.O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” Int. J. Therm. Sci. 50, 1326-1332 (2011).
http://dx.doi.org/10.1016/j.ijthermalsci.2011.02.019
18.
18.S. M. Aminossadati, A. Raisi, and B. Ghasemi, “Effects of magnetic field on nanofluid forced convection in a partially heated microchannel,” Int. J. Non-Linear Mech. 46, 1373-1382 (2011).
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.07.013
19.
19.M. Mustafa, M. A. Farooq, T. Hayat, and A. Alsaedi, “Numerical and series solutions for stagnation-point flow of nanofluid over an exponentially stretching sheet,” PLoS ONE 8 (2013) doi:10.1371/journal.pone.0061859.
http://dx.doi.org/10.1371/journal.pone.0061859
20.
20.O. D. Makinde, W. A. Khan, and Z. H. Khan, “Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet,” Int. J. Heat Mass Transf. 62, 526-533 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.049
21.
21.M. C. Kim, “The onset of Soret-driven convection of a nanoparticles suspension confined within a Hele-Shaw cell or in a porous medium,” Int. J. Non-Linear Mech. 67, 291-299 (2014).
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.09.015
22.
22.M. Mustafa, J. A. Khan, T. Hayat, and A. Alsaedi, “Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet,” Int. J. Non-Linear Mech. 71, 22-29 (2015).
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.01.005
23.
23.M. M. Rashidi, S. Abelman, and N. Freidoonimehr, “Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid,” Int. J. Heat Mass Transf. 62, 515-525 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.004
24.
24.M. Turkyilmazoglu, “Unsteady convection flow of some nanofluids past a moving vertical plate with heat transfer,” ASME J. Heat Transf. 136, 031704 (2013) doi: 10.1115/1.4025730.
http://dx.doi.org/10.1115/1.4025730
25.
25.M. Turkyilmazoglu and I. Pop, “Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect,” Int. J. Heat Mass Transf. 59, 167-171 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.009
26.
26.A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model,” Int. J. Therm. Sci. 77, 126-129 (2014).
http://dx.doi.org/10.1016/j.ijthermalsci.2013.10.007
27.
27.M. Sheikholeslami and M. Gorji-Bandpy, “Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field,” Powder Technol. 256, 490-498 (2014).
http://dx.doi.org/10.1016/j.powtec.2014.01.079
28.
28.M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, and S. Soleimani, “Thermal management for free convection of nanofluid using two phase model,” J. Mol. Liq. 194, 179-187 (2014).
http://dx.doi.org/10.1016/j.molliq.2014.01.022
29.
29.M. M. Rashidi, N. Freidoonimehr, A. Hosseini, O. A. Bég, and T. K. Hung, “Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration,” Meccan. 49, 469-482 (2014).
http://dx.doi.org/10.1007/s11012-013-9805-9
30.
30.A. Mushtaq, M. Mustafa, T. Hayat, and A. Alsaedi, “Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study,” J. Taiwan Inst. Chem. Eng. 45, 1176-1183 (2014).
http://dx.doi.org/10.1016/j.jtice.2013.11.008
31.
31.J. A. Khan, M. Mustafa, T. Hayat, M. Asif Farooq, A. Alsaedi, and S. J. Liao, “On model for three-dimensional flow of nanofluid: An application to solar energy,” J. Molec. Liqui. 194, 41-47 (2014).
http://dx.doi.org/10.1016/j.molliq.2013.12.045
32.
32.M. Sheikholeslami, M. G. Bandpy, R. Ellahi, M. Hassan, and S. Soleimani, “Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM,” J. Magn. Magn. Mater. 349, 188-200 (2014).
http://dx.doi.org/10.1016/j.jmmm.2013.08.040
33.
33.M. Mustafa, J. A. Khan, T. Hayat, and A. Alsaedi, “Boundary layer flow of nanofluid over a non-linearly stretching sheet with convective boundary condition,” IEEE Trans. Nanotech.doi: 10.1109/TNANO.2014.2374732 (2015).
http://dx.doi.org/10.1109/TNANO.2014.2374732
34.
34.M. Mustafa, A. Mushtaq, T. Hayat, and B. Ahmad, “Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: A numerical study,” PLoS ONE 9 (2014), doi: 10.1371/journal.pone.0103946.
http://dx.doi.org/10.1371/journal.pone.0103946
35.
35.M. Bahiraei and M. Hangi, “Flow and heat transfer characteristics of magnetic nanofluids: A review,” J. Magn. Magn. Mater. 374, 125-138 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.08.004
36.
36.R. Dhanai, P. Rana, and L. Kumar, “Multiple solutions of MHD boundary layer flow and heat transfer behavior of nanofluids induced by a power-law stretching/shrinking permeable sheet with viscous dissipation,” Powder Technology 273, 62-70 (2014).
http://dx.doi.org/10.1016/j.powtec.2014.12.035
37.
37.K. V. Prasad, K. Vajravelu, and P. S. Datti, “Viscous flow over a nonlinearly stretching sheet,” Int. J. Non-Linear Mech. 45, 320-330 (2010).
http://dx.doi.org/10.1016/j.ijnonlinmec.2009.12.003
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927449
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927449
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927449
2015-07-22
2016-09-29

Abstract

Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927449.html;jsessionid=Bw0TTIRDXf9JpawG8-E_geLs.x-aip-live-03?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927449&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927449&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927449'
Right1,Right2,Right3,