Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927466
1.
1.J. Yang, J. Chen, Y. Yang, H.L. Zhang, W.Q. Yang, P. Bai, Y.J. Su, and Z.L. Wang, “Broadband vibrational energy harvesting based on a triboelectric nanogenerator,” Adv. Energy Mater. 4, 1301322 (2014).
2.
2.J. Yang, J. Chen, Y. Liu, W.Q Yang, Y.J. Su, and Z.L. Wang, “Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing,” ACS Nano 8, 2649-2657 (2014).
http://dx.doi.org/10.1021/nn4063616
3.
3.J. Yang, J. Chen, Y. J. Su, Q.S. Jing, Z.L. Li, F. Yi, X.N. Wen, Z.N. Wang, and Z.L. Wang, “Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition,” Adv. Mater. 27, 1316-1326 (2015).
http://dx.doi.org/10.1002/adma.201404794
4.
4.J. Chen, G. Zhu, W.Q. Yang, Q.S. Jing, P. Bai, Y. Yang, T.C. Hou, and Z.L. Wang, “Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor,” Adv. Mater. 258, 6094-6099 (2013).
http://dx.doi.org/10.1002/adma.201302397
5.
5.J. Chen, J. Yang, Z.L. Li, X. Fan, Y.L. Zi, Q,S. Jing, H.Y. Guo, Z. Wen, K.C. Pradel, S.M. Niu, and Z.L. Wang, “Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy,” ACS Nano 9, 3324-3331 (2015).
http://dx.doi.org/10.1021/acsnano.5b00534
6.
6.W.Q. Yang, J. Chen, G. Zhu, X.N. Wen, P. Bai, Y.J. Su, Y.J. Su, Y. Lin, and Z.L. Wang, “Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator,” Nano Res. 6, 880-886 (2013).
http://dx.doi.org/10.1007/s12274-013-0364-0
7.
7.W.Q. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q.S. Jing, X. Cao, and Z.L. Wang, “Harvesting energy from the natural vibration of human walking,” ACS Nano. 7, 11317-11324 (2013).
http://dx.doi.org/10.1021/nn405175z
8.
8.W.Q. Yang, J. Chen, Q.S. Jing, J. Yang, X.N. Wen, Y.J. Su, G. Zhu, P. Bai, and Z.L. Wang, “3D stack integrated triboelectric nanogenerator for harvesting vibration energy,” Adv. Funct. Matter. 24, 4090-4096 (2014).
http://dx.doi.org/10.1002/adfm.201304211
9.
9.J. Q. Liu, H. B. Fang, Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H. Liao, and B. C. Cai, “A MEMS-based piezoelectric power generator array for vibration energy harvesting,” Microelectronics. J. 39, 802806 (2008).
http://dx.doi.org/10.1016/j.mejo.2007.12.017
10.
10.I. Sari, T. Balkan, and H. Kulah, “An electromagnetic micro power generator for wideband environmental vibrations,” Sens. Actuators. 145-146, 405413 (2008).
http://dx.doi.org/10.1016/j.sna.2007.11.021
11.
11.S. M. Jung and K. S. Yun, “Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation,” Appl. Phys. Lett. 96, 111906 (2010).
http://dx.doi.org/10.1063/1.3360219
12.
12.M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, and C. Trigona, “Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters,” Proc. Chem. 162, 425-431 (2010).
13.
13.A. Hajati and S. G. Kim, “Ultra-wide bandwidth piezoelectric energy harvesting,” Appl. Phys. Lett. 99, 083105 (2011).
http://dx.doi.org/10.1063/1.3629551
14.
14.A. Erturk, J. Hoffmann, and D. J. Inman, “A piezomagnetoelastic structure for broadband vibration energy harvesting,” Appl. Phys. Lett. 94, 254102 (2009).
http://dx.doi.org/10.1063/1.3159815
15.
15.A. Hajati, S. P. Bathurst, H. J. Lee, and S. G. Kim, “Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications,” IEEE MEMS 2011, 1301-1304 (2011).
16.
16.C. Eichhorn, F. Goldschmidtboeing, and P. Woias, “Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam,” J. Micromech. Microeng. 19, 094006 (2009).
http://dx.doi.org/10.1088/0960-1317/19/9/094006
17.
17.E.S. Leland and P. K. Wright, “Resonance tuning of piezo-electric vibration energy scavenging generators using compressive axial preload,” Smart Mater. Struct. 15, 1413 (2006).
http://dx.doi.org/10.1088/0964-1726/15/5/030
18.
18.S Roundy and Y Zhang, “Toward self-tuning adaptive vibration based micro-generators,” Proc. of SPIE 5649, 373-384 (2005).
http://dx.doi.org/10.1117/12.581887
19.
19.Hao Wu, Lihua Tang, Yaowen Yang, and Kiong Soh Chee, “A novel two-degrees-of-freedom piezoelectric energy harvester,” J. Intell. Mater Syst. Struct. 24, 357-363 (2013).
http://dx.doi.org/10.1177/1045389X12457254
20.
20.J. E. Kim and Y. Y. Kim, “Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester,” AIP Adv. 3, 072103 (2013).
http://dx.doi.org/10.1063/1.4813314
21.
21.Y. Hu and Y. Xu, “A wideband vibration energy harvester based on a folded asymmetric gapped cantilever,” Appl. Phys. Lett. 104, 053902.
http://dx.doi.org/10.1063/1.4863923
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927466
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927466
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927466
2015-07-22
2016-09-28

Abstract

This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927466.html;jsessionid=SBdgit0LuorCMkpfuUEIBXyj.x-aip-live-03?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927466&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927466&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927466'
Right1,Right2,Right3,