Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927496
1.
1.E. Ozbay, Science 311(5758), 189193 (2006).
http://dx.doi.org/10.1126/science.1114849
2.
2.R. X. Yang, R. A. Wahsheh, Z. L. Lu, and M. A. G. Abushagur, Opt. Lett. 35(5), 649651 (2010).
http://dx.doi.org/10.1364/OL.35.000649
3.
3.P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, Nat. Photonics 3(2), 283286 (2009).
http://dx.doi.org/10.1038/nphoton.2009.47
4.
4.B. Wang and G. P. Wang, Appl. Phys. Lett. 87(7), 013107:1-3 (2005).
5.
5.A. Hosseini and Y. Massoud, Opt. Express 14(23), 1131811323 (2006).
http://dx.doi.org/10.1364/OE.14.011318
6.
6.J. Park, H. Kim, and B. Lee, Opt. Express 16(1), 413425 (2008).
http://dx.doi.org/10.1364/OE.16.000413
7.
7.Z. H. Han, E. Forsberg, and S. L. He, IEEE Photonics Technol. Lett. 19(2), 9193 (2007).
http://dx.doi.org/10.1109/LPT.2006.889036
8.
8.Y. F. Liu, Y. Liu, and J. Kim, Opt. Express 18(11), 1158911598 (2010).
http://dx.doi.org/10.1364/OE.18.011589
9.
9.P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, Opt. Express 20(4), 34083423 (2012).
http://dx.doi.org/10.1364/OE.20.003408
10.
10.L. Zhou, X. Q. Yu, and Y. Y. Zhu, Appl. Phys. Lett. 89(5), 051901:1-3 (2006).
11.
11.B. F. Yun, G. H. Hu, R. H. Zhang, and C. Y. Cui, Opt. Express 22(23), 2866228670 (2014).
http://dx.doi.org/10.1364/OE.22.028662
12.
12.Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, AIP ADV. 3(1), 012106:1-6 (2013).
http://dx.doi.org/10.1063/1.4775353
13.
13.F. Zhou, Y. Liu, and W. P. Cai, Opt. Express 22(24), 2938229387 (2014).
http://dx.doi.org/10.1364/OE.22.029382
14.
14.S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
15.
15.S. He, X. Zhang, and Y. He, Opt. Express 21(25), 3066430673 (2013).
http://dx.doi.org/10.1364/OE.21.030664
16.
16.P. Li and T. Taubner, ACS Nano 6(11), 1010710114 (2012).
http://dx.doi.org/10.1021/nn303845a
17.
17.B. H. Cheng, K. J. Chang, Y. C. Lan, and D. P. Tsai, Opt. Express 22(23), 2863528644 (2014).
http://dx.doi.org/10.1364/OE.22.028635
18.
18.R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, Opt. Express 21(3), 37373745 (2013).
http://dx.doi.org/10.1364/OE.21.003737
19.
19.P. Y. Chen and A. Alù, ACS Nano 5(7), 58555863 (2011).
http://dx.doi.org/10.1021/nn201622e
20.
20.V. Ashkan and N. Engheta, Science 332(6035), 12911294 (2011).
http://dx.doi.org/10.1126/science.1202691
21.
21.Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, Nano Lett. 14(1), 299304 (2014).
http://dx.doi.org/10.1021/nl404042h
22.
22.L. Zhang, J. Yang, X. Fu, and M. Zhang, Appl. Phys. Lett. 103(16), 163114 (2013).
http://dx.doi.org/10.1063/1.4826515
23.
23.B. Vasić, G. Isić, and R. Gajić, Appl. Phys. Lett. 113(1), 013110 (2013).
24.
24.B. Wang, X. Zhang, F. J. Garc_ıa-Vidal, X. Yuan, and J. Teng, Phys. Rev. Lett. 109(7), 073901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.073901
25.
25.H. Lin, M. F. Pantoja, L. D. Angulo, J. Alvarez, R. G. Martin, and S. G. Garcia, IEEE Microwave Wireless Comp. Lett. 22(12), 612 (2012).
http://dx.doi.org/10.1109/LMWC.2012.2227466
26.
26.B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100(13), 131111:1-3 (2012).
27.
27.H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, Europhys. Lett. 104(3), 37001 (2013).
http://dx.doi.org/10.1209/0295-5075/104/37001
28.
28.J. Tao, X. C. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, Opt. Lett. 39(2), 271274 (2014).
http://dx.doi.org/10.1364/OL.39.000271
29.
29.G. W. Hanson, J. Appl. Phys. 104(8), 084314 (2008).
http://dx.doi.org/10.1063/1.3005881
30.
30.D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton NJ, 2008).
31.
31.X. Luo, X. H. Zou, X. F. Li, W. Pan, B. Luo, and L. S. Yan, Plasmonics 9(2), 887892 (2014).
http://dx.doi.org/10.1007/s11468-014-9693-4
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927496
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927496
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927496
2015-07-23
2016-09-28

Abstract

We investigate theoretically and numerically a graphene parallel-plate waveguide structure with two alternate chemical potentials (which can be realized by alternately applying two biased voltages to graphene). A plasmonic Bragg reflector can be formed in infrared range because of the alternate effective refractive indexes of SPPs propagating along graphene sheets. By introducing a defect into the Bragg reflector, and then the defect resonance mode can be formed. Thanks to the tunable permittivity of graphene by bias voltages, the central wavelength and bandwidth of SPPs stop band, and the wavelength of the defect mode can be tuned.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927496.html;jsessionid=G28G1i_xiRRKU8ZHF9KodoZC.x-aip-live-06?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927496&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927496&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927496'
Right1,Right2,Right3,