Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927497
1.
1.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
2.
2.S. Iijima, Nature 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
3.
3.K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
4.
4.K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17954
5.
5.J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1297
6.
6.G. Wang and Y. H. Huang, J. Phys. Chem. C 112, 9128 (2008).
http://dx.doi.org/10.1021/jp7108253
7.
7.H. C. Bai, R. X. Du, W. Y. Qiao, and Y. H. Huang, J. Mol. Struc. -Theochem 961, 42 (2010).
http://dx.doi.org/10.1016/j.theochem.2010.08.033
8.
8.H. C. Bai, Y. Ai, and Y. H. Huang, Phys. Status Solidi B 248, 969 (2011).
http://dx.doi.org/10.1002/pssb.201046305
9.
9.C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.205501
10.
10.S. Tongay, R. Senger, S. Dag, and S. Ciraci, Phys. Rev. Lett. 93, 136404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.136404
11.
11.Y. Wang, Y. H. Huang, B. Yang, and R. Z. Liu, Carbon 46, 276 (2008).
http://dx.doi.org/10.1016/j.carbon.2007.11.043
12.
12.D. Elias, R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, and A. Geim, Science 323, 610 (2009).
http://dx.doi.org/10.1126/science.1167130
13.
13.R. Chauvin, Tetrahedron Lett. 36, 397 (1995).
http://dx.doi.org/10.1016/0040-4039(94)02275-G
14.
14.C. Zou, C. Duhayon, V. Maraval, and R. Chauvin, Angew. Chem. 119, 4415 (2007).
http://dx.doi.org/10.1002/ange.200605262
15.
15.P. Manini, W. Amrein, V. Gramlich, and F. Diederich, Angew. Chem. 114, 4515 (2002).
http://dx.doi.org/10.1002/1521-3757(20021115)114:22<4515::AID-ANGE4515>3.0.CO;2-3
16.
16.R. H. Baughman, H. Eckhardt, and M. Kertesz, J. Chem. Phys. 87, 6687 (1987).
http://dx.doi.org/10.1063/1.453405
17.
17.M. M. Haley, S. C. Brand, and J. J. Pak, Angew Chem 36, 835 (1997).
http://dx.doi.org/10.1002/anie.199708361
18.
18.G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Chem Commun (Camb) 46, 3256 (2010).
http://dx.doi.org/10.1039/b922733d
19.
19.M. Long, L. Tang, D. Wang, Y. Li, and Z. G. Shuai, ACS Nano 5, 2593 (2011).
http://dx.doi.org/10.1021/nn102472s
20.
20.H. C. Bai, Y. Zhu, W. Y. Qiao, and Y. H. Huang, RSC Adv. 1, 768 (2011).
http://dx.doi.org/10.1039/c1ra00481f
21.
21.L. D. Pan, L. Z. Zhang, B. Q. Song, S. X. Du, and H. J. Gao, Appl. Phys. Lett. 98, 173102 (2011).
http://dx.doi.org/10.1063/1.3583507
22.
22.D. Malko, C. Neiss, F. Viñes, and A. Görling, Appl. Phys. Lett. 108, 086804 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.086804
23.
23.N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Phys. Rev. B 5, 11009 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.11009
24.
24.J. Kang, J. Li, F. Wu, S. –S. Li, and J. –B. Xia, J. Phys. Chem. C 115, 20466 (2011).
http://dx.doi.org/10.1021/jp206751m
25.
25.X. Niu, X. Mao, D. Yang, Z. Zhang, M. Si, and D. Xue, Nanoscale Res Lett. 8, 469 (2013).
http://dx.doi.org/10.1186/1556-276X-8-469
26.
26.J. Chen, J. Xi, D. Wang, and Z. G. Shuai, J. Phys. Chem. Lett. 4, 1443 (2013).
http://dx.doi.org/10.1021/jz4005587
27.
27.K. P. Nihan and S. Cem, Nanotechnology 25, 185701 (2014).
http://dx.doi.org/10.1088/0957-4484/25/18/185701
28.
28.Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Appl. Phys. Lett. 101, 081909 (2012).
http://dx.doi.org/10.1063/1.4747719
29.
29.G. X. Wang, M. S. Si, A. Kumar, and R. Pandey, Appl. Phys. Lett. 104, 213107 (2014).
http://dx.doi.org/10.1063/1.4880635
30.
30.D. Z. Yang, M. S. Si, G. P. Zhang, and D. S. Xue, Europhys. Lett. 107, 20003 (2014).
http://dx.doi.org/10.1209/0295-5075/107/20003
31.
31.K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17954
32.
32.W. Z. Wu, W. L. Guo, and C. X. Zeng, Nanoscale 5, 9264 (2013).
http://dx.doi.org/10.1039/c3nr03167e
33.
33.Y. Ni, K. L. Yao, H. H. Fu, G. Y. Gao, S. C. Zhu, B. Luo, S. L. Wang, and R. X. Li, Nanoscale 5, 4468 (2013).
http://dx.doi.org/10.1039/c3nr00731f
34.
34.Y. H. Zhou, J. Zeng, and K.Q. Chen, Carbon 76, 175 (2014).
http://dx.doi.org/10.1016/j.carbon.2014.04.065
35.
35.J. L. Lu, Y. H. Guo, Y. Zhang, and J. X. Cao, Int. J. Hydrogen Energ 39, 17112 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2014.08.066
36.
36.R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, and C. M. Z. Wilson, Z. Kristallogr 220, 571 (2005).
http://dx.doi.org/10.1524/zkri.220.5.571.65065
37.
37.B. Civalleri, F. Napoli, Y. Noël, C. Roetti, and R. Dovesi, CrystEngComm 8, 364 (2006).
http://dx.doi.org/10.1039/b603150c
38.
38.J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
39.
39.D. Bilc, R. Orlando, R. Shaltaf, G. -M. Rignanese, J. Íñiguez, and P. Ghosez, Phys. Rev. B 77, 165107 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.165107
40.
40.V. Barone, O. Hod, and G. E. Scuseria, Nano Lett. 6, 2748 (2006).
http://dx.doi.org/10.1021/nl0617033
41.
41.T. Dumitrică, M. Hua, and B. Yakobson, Phys. Rev. B 70, 241303 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.241303
42.
42.T. Kawai, Y. Miyamoto, O. Sugino, and Y. Koga, Phys. Rev. B 62, 16349 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R16349
43.
43.S. Okada, Phys. Rev. B 77, 041408 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.041408
44.
44.Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
45.
45.Q. Yue, S. L. Chang, J. Kang, J. C. Tan, S. Q. Qin, and J. B. Li, J. Chem. Phys. 136, 244702 (2012).
http://dx.doi.org/10.1063/1.4730325
46.
46.X. N. Niu, D. Z. Yang, M. S. Si, and D. S. Xue, J. Appl. Phys. 115, 143706 (2014).
http://dx.doi.org/10.1063/1.4871278
47.
47.G. Wang and Y. H. Huang, J. Phys. Chem. Solids 69, 2531 (2008).
http://dx.doi.org/10.1016/j.jpcs.2008.05.011
48.
48.X. Zhao, W. Y. Qiao, Y. L. Li, and Y. H. Huang, J. Solid State Chem. 221, 102 (2014).
http://dx.doi.org/10.1016/j.jssc.2014.09.023
49.
49.M. Q. Long, L. Tang, D. Wang, L. Wang, and Z. G. Shuai, J. Am. Chem. Soc. 131, 17728 (2009).
http://dx.doi.org/10.1021/ja907528a
50.
50.J. Bardeen, W. Shockley, and N. J. Tao, Phys. Rev 80, 72 (1950).
http://dx.doi.org/10.1103/PhysRev.80.72
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927497
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927497
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927497
2015-07-23
2016-12-07

Abstract

Structures, stabilities, electronic properties and carrier mobilities of 6,6,12-graphyne nanoribbons (GyNRs) with armchair and zigzag edges are investigated using the self-consistent field crystal orbital method based on density functional theory. It is found that the 1D GyNRs are more stable than the 2D 6,6,12-graphyne sheet in the view of the Gibbs free energy. The stabilities of these GyNRs decrease as their widths increase. The calculated band structures show that all these GyNRs are semiconductors and that dependence of band gaps on the ribbon width is different from different types of the GyNRs. The carrier mobility was calculated based on the deformation theory and effective mass approach. It is found that the carrier mobilities of these GyNRs can reach the order of 105 cm2 V –1s–1 at room temperature and are comparable to those of graphene NRs. Moreover, change of the mobilities with change of the ribbon width is quite different from different types of the GyNRs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927497.html;jsessionid=VeTRIBX-ZwRGqWNHGOMtWk1-.x-aip-live-06?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927497&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927497&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927497'
Right1,Right2,Right3,