Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927503
1.
1.N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013).
http://dx.doi.org/10.1021/jz400892a
2.
2.J. Bisquert, J. Phys. Chem. Lett. 4, 2597 (2013).
http://dx.doi.org/10.1021/jz401435d
3.
3.A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
4.
4.M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
5.
5.J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, Md. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
6.
6.L. Etgar, P. Gao, Z. X. Peng, A. K. Chandiran, B. Liu, Md. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012).
http://dx.doi.org/10.1021/ja307789s
7.
7.I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, Nature 485, 486 (2012).
http://dx.doi.org/10.1038/nature11067
8.
8.M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
9.
9.P.V. Kamat, J. Phys. Chem. Lett. 4, 3733 (2013).
http://dx.doi.org/10.1021/jz402141s
10.
10.H. J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).
http://dx.doi.org/10.1021/jz4020162
11.
11.G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, J. Mater. Chem. A 2, 705 (2014).
http://dx.doi.org/10.1039/C3TA13606J
12.
12.W.J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).
http://dx.doi.org/10.1002/adma.201306281
13.
13.W.J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).
http://dx.doi.org/10.1063/1.4864778
14.
14.J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett. 14, 2584 (2014).
http://dx.doi.org/10.1021/nl500390f
15.
15.S. Colella, E. Mosconi, P. Fedelli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, F. Calestani, G. Gigli, F. De Angelis, and R. Mosca, Chem. Mater. 25, 4613 (2013).
http://dx.doi.org/10.1021/cm402919x
16.
16.T. Zhang, M. Yang, E. E. Benson, Z. Li, J. van de Lagemaat, J. M. Luther, Y. Yan, K. Zhu, and Y. Zhao, Chem. Commun. 51, 7820 (2015).
http://dx.doi.org/10.1039/C5CC01835H
17.
17.I. Chung, B. Lee, J. He, R.P. H. Chang, and M.G. Kanatzidis, Nature 485, 486 (2012).
http://dx.doi.org/10.1038/nature11067
18.
18.I. Borriello, G. Cantele, and D. Ninno, Phys. Rev. B 77, 235214 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235214
19.
19.M.G. Kanatzidis, I. Chung, B. Lee, and R.P. H. Chang, US-Patent 2013/0233377 A1 (2013).
20.
20.M.G. Kanatzidis, I. Chung, and K. Stoumpos, US-Patent 2013/0320836 A1 (2013).
21.
21.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
22.
22.P. E. Blöchl, Phys. Rev. B 50, 17 953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
23.
23.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
http://dx.doi.org/10.1103/PhysRevLett.77.3865
23.J. P. Perdew, K. Burke, and M. Ernzerhof, Erratum: Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
24.
24.H. J. Monkhorst and James D. Pack, Phys. Rev. B 13, 12 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
25.
25.L. Huang and W. R. L. Lambrecht, Phys. Rev. B 88, 165203 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.165203
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4927503 for the low lying configurations of CsSnI2Cl, CsSnI2Br, CsSnBr2I, and CsSnBr2Cl.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927503
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927503
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927503
2015-07-23
2016-09-26

Abstract

calculations on CsSnX perovskites and mixed halides CsSn(XY ), X and Y = I, Cl, and Br, show that all of them have a band gap of ∼1 eV which can be tuned by varying the compositions of X and Y. The optimized supercells are tetragonal, orthorhombic or monoclinic. The top of the valence band arises from hybridization of Sn 4s and halogen p valence orbitals while the bottom of the conduction band has predominantly Sn character. Similar to organo-metallic lead halides this is expected to facilitate - optical transitions that are highly favourable for photoabsorption. Our results suggest that these inorganic perovskites have the desired features to achieve high efficiency of photo-response with appropriate combination of halogens.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927503.html;jsessionid=ckIkIXW7WGumYkEHfAztHN6Y.x-aip-live-03?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927503&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927503&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927503'
Right1,Right2,Right3,