Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927509
1.
1.D. Guo, G. Xie, and J. Luo, J. Phys. D 47, 13001 (2014).
http://dx.doi.org/10.1088/0022-3727/47/1/013001
2.
2.G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, and Z. L. Wang, Nano Lett. 13, 847 (2013).
http://dx.doi.org/10.1021/nl4001053
3.
3.D. Mordehai, S. Lee, B. Backes, D. J. Srolovitz, W. D. Nix, and E. Rabkin, Acta Mater. 59, 5202 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.04.057
4.
4.D. Chrobak, N. Tymiak, A. Beaber, O. Ugurlu, W. W. Gerberich, and R. Nowak, Nature Nanotech. 6, 480 (2011).
http://dx.doi.org/10.1038/nnano.2011.118
5.
5.W. W. Gerberich, W. M. Mook, C. R. Perrey, C. B. Carter, M. I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P. H. McMurry, and S. L. Girshick, J. Mech. Phys. Solids 51, 979 (2003).
http://dx.doi.org/10.1016/S0022-5096(03)00018-8
6.
6.P. Valentini, W. W. Gerberich, and T. Dumitrica, Phys. Rev. Lett. 99, 175701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.175701
7.
7.L. M. Hale, X. Zhou, J. A. Zimmerman, N. R. Moody, R. Ballarini, and W. W. Gerberich, Comp. Mater. Sci. 50, 1651 (2011).
http://dx.doi.org/10.1016/j.commatsci.2010.12.023
8.
8.N. Zhang, Q. Deng, Y. Hong, L. Xiong, S. Li, M. Strasberg, W. Yin, Y. Zou, C. R. Taylor, G. Sawyer, and Y. Chen, J. Appl. Phys. 109, 063534 (2011).
http://dx.doi.org/10.1063/1.3552985
9.
9.F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.5262
10.
10.J. Godet, L. Pizzagalli, S. Brochard, and P. Beauchamp, Phys. Rev. B 70, 054109 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.054109
11.
11.L. M. Hale, D. B. Zhang, X. Zhou, J. A. Zimmerman, N. R. Moody, T. Dumitrica, R. Ballarini, and W. W. Gerberich, Comp. Mater. Sci. 54, 280 (2012).
http://dx.doi.org/10.1016/j.commatsci.2011.11.004
12.
12.Z. W. Shan, G. Adesso, A. Cabot, M. P. Sherburne, S. A. Syed Asif, O. L. Warren, D. C. Chrzan, A. M. Minor, and A. P. Alivisatos, Nature Mater. 7, 947 (2008).
http://dx.doi.org/10.1038/nmat2295
13.
13.Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Nano Lett. 11, 2949 (2011).
http://dx.doi.org/10.1021/nl201470j
14.
14.J. Yin, M. Retsch, J. Lee, E. L. Thomas, and M. C. Boyce, Langmuir 27, 10492 (2011).
http://dx.doi.org/10.1021/la2018117
15.
15.P. Leidinger, R. Popescu, D. Gerthsen, and C. Feldmann, SMALL 6, 1886 (2010).
http://dx.doi.org/10.1002/smll.201000575
16.
16.S. Plimpton, J. Comp. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
17.
17.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
18.
18.J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, and S. M. Foiles, Phys. Rev. Lett. 87, 165507 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.165507
19.
19.A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
http://dx.doi.org/10.1088/0965-0393/18/1/015012
20.
20.T. Zhu, J. Li, K. J. Van Vliet, S. Ogata, S. Yip, and S. Suresha, J. Mech. Phys. Solids 52, 691 (2004).
http://dx.doi.org/10.1016/j.jmps.2003.07.006
21.
21.K. L. Johnson, Contact Mechanics (Cambridge University Press, London, 1985), p.62, p.153.
22.
22.D. P. Updike and A. Kalnins, J. Appl. Mech. 37, 635 (1970).
http://dx.doi.org/10.1115/1.3408592
23.
23.J. D. Nowak, W. M. Mook, A. M. Minor, W. W. Gerberich, and C. B. Carter, Philos. Mag. 87, 29 (2007).
http://dx.doi.org/10.1080/14786430600876585
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927509
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927509
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927509
2015-07-23
2016-09-25

Abstract

Even inherently brittle hollow silicon nanoparticles (NPs) can withstand larger strain to failure than solid NPs. However, the influence of wall thickness on the mechanical behavior of hollow Si NPs is not fully understood. Using molecular dynamics simulations, we investigate the compressive behavior of hollow Si NPs. Three distinct failure mechanisms of hollow NPs are uncovered, and their strength and deformability are analyzed quantitatively. For extra-thick-walled NPs, dislocations will nucleate below the contact area and cut through the particles till failure. For mid-thick-walled NPs, however, dislocations will emit from the inner surface and slip towards the outer surface. For thin-walled NPs, elastic buckling is the cause of failure. Compared to solid NPs, hollow NPs with wall thickness being around half of its outer radius can achieve significant improvement in both strength and deformability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927509.html;jsessionid=HgMMSuI7OooK50y1WgfimPbv.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927509&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927509&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927509'
Right1,Right2,Right3,