Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. Guo, G. Xie, and J. Luo, J. Phys. D 47, 13001 (2014).
2.G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, and Z. L. Wang, Nano Lett. 13, 847 (2013).
3.D. Mordehai, S. Lee, B. Backes, D. J. Srolovitz, W. D. Nix, and E. Rabkin, Acta Mater. 59, 5202 (2011).
4.D. Chrobak, N. Tymiak, A. Beaber, O. Ugurlu, W. W. Gerberich, and R. Nowak, Nature Nanotech. 6, 480 (2011).
5.W. W. Gerberich, W. M. Mook, C. R. Perrey, C. B. Carter, M. I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P. H. McMurry, and S. L. Girshick, J. Mech. Phys. Solids 51, 979 (2003).
6.P. Valentini, W. W. Gerberich, and T. Dumitrica, Phys. Rev. Lett. 99, 175701 (2007).
7.L. M. Hale, X. Zhou, J. A. Zimmerman, N. R. Moody, R. Ballarini, and W. W. Gerberich, Comp. Mater. Sci. 50, 1651 (2011).
8.N. Zhang, Q. Deng, Y. Hong, L. Xiong, S. Li, M. Strasberg, W. Yin, Y. Zou, C. R. Taylor, G. Sawyer, and Y. Chen, J. Appl. Phys. 109, 063534 (2011).
9.F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
10.J. Godet, L. Pizzagalli, S. Brochard, and P. Beauchamp, Phys. Rev. B 70, 054109 (2004).
11.L. M. Hale, D. B. Zhang, X. Zhou, J. A. Zimmerman, N. R. Moody, T. Dumitrica, R. Ballarini, and W. W. Gerberich, Comp. Mater. Sci. 54, 280 (2012).
12.Z. W. Shan, G. Adesso, A. Cabot, M. P. Sherburne, S. A. Syed Asif, O. L. Warren, D. C. Chrzan, A. M. Minor, and A. P. Alivisatos, Nature Mater. 7, 947 (2008).
13.Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Nano Lett. 11, 2949 (2011).
14.J. Yin, M. Retsch, J. Lee, E. L. Thomas, and M. C. Boyce, Langmuir 27, 10492 (2011).
15.P. Leidinger, R. Popescu, D. Gerthsen, and C. Feldmann, SMALL 6, 1886 (2010).
16.S. Plimpton, J. Comp. Phys. 117, 1 (1995).
17.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
18.J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, and S. M. Foiles, Phys. Rev. Lett. 87, 165507 (2001).
19.A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
20.T. Zhu, J. Li, K. J. Van Vliet, S. Ogata, S. Yip, and S. Suresha, J. Mech. Phys. Solids 52, 691 (2004).
21.K. L. Johnson, Contact Mechanics (Cambridge University Press, London, 1985), p.62, p.153.
22.D. P. Updike and A. Kalnins, J. Appl. Mech. 37, 635 (1970).
23.J. D. Nowak, W. M. Mook, A. M. Minor, W. W. Gerberich, and C. B. Carter, Philos. Mag. 87, 29 (2007).

Data & Media loading...


Article metrics loading...



Even inherently brittle hollow silicon nanoparticles (NPs) can withstand larger strain to failure than solid NPs. However, the influence of wall thickness on the mechanical behavior of hollow Si NPs is not fully understood. Using molecular dynamics simulations, we investigate the compressive behavior of hollow Si NPs. Three distinct failure mechanisms of hollow NPs are uncovered, and their strength and deformability are analyzed quantitatively. For extra-thick-walled NPs, dislocations will nucleate below the contact area and cut through the particles till failure. For mid-thick-walled NPs, however, dislocations will emit from the inner surface and slip towards the outer surface. For thin-walled NPs, elastic buckling is the cause of failure. Compared to solid NPs, hollow NPs with wall thickness being around half of its outer radius can achieve significant improvement in both strength and deformability.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd