Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927546
1.
1.S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, and R. Wiesendanger, Science 317, 1537 (2007).
http://dx.doi.org/10.1126/science.1145336
2.
2.S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar, M. Roukes, A. Y. Chtchelkanova, and D. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
3.
3.C. Chappert, A. Fert, and F. N. Van Dau, Nat. Mater. 6, 813 (2007).
http://dx.doi.org/10.1038/nmat2024
4.
4.P. Sabareesan and M. Daniel, Phys. Scr. 84, 035706 (2011).
http://dx.doi.org/10.1088/0031-8949/84/03/035706
5.
5.J. Sun, Nature 425, 359 (2003).
http://dx.doi.org/10.1038/425359a
6.
6.E. Myers, D. Ralph, J. Katine, R. Louie, and R. Buhrman, Science 285, 867 (1999).
http://dx.doi.org/10.1126/science.285.5429.867
7.
7.J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
8.
8.L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
9.
9.M. Tsoi, A. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4281
10.
10.J.-E. Wegrowe, D. Kelly, Y. Jaccard, P. Guittienne, and J.-P. Ansermet, Europhys. Lett. 45, 626 (1999).
http://dx.doi.org/10.1209/epl/i1999-00213-1
11.
11.J. Katine, F. Albert, R. Buhrman, E. Myers, and D. Ralph, Phys. Rev. Lett. 84, 3149 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3149
12.
12.X. Waintal, E. B. Myers, P. W. Brouwer, and D. C. Ralph, Phys. Rev. B 62, 12317 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.12317
13.
13.S. Zhang, P. M. Levy, and A. Fert, Phys. Rev. Lett. 88, 236601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.236601
14.
14.M. Stiles and A. Zangwill, J. Appl. Phys. 91, 6812 (2002).
http://dx.doi.org/10.1063/1.1446123
15.
15.J. Grollier, V. Cros, A. Hamzic, J.-M. George, H. Jaffres, A. Fert, G. Faini, J. Ben Youssef, and H. Legall, Appl. Phys. Lett. 78, 3663 (2001).
http://dx.doi.org/10.1063/1.1374230
16.
16.S. I. Kiselev, J. Sankey, I. Krivorotov, N. Emley, R. Schoelkopf, R. Buhrman, and D. Ralph, Nature 425, 380 (2003).
http://dx.doi.org/10.1038/nature01967
17.
17.B. Özyilmaz, A. D. Kent, J. Z. Sun, M. J. Rooks, and R. H. Koch, Phys. Rev. Lett. 93, 176604 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.176604
18.
18.Z. Li and S. Zhang, Phys. Rev. B 68, 024404 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.024404
19.
19.J. Xiao, A. Zangwill, and M. D. Stiles, Phys. Rev. B 72, 014446 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014446
20.
20.E. Martinez, L. Torres, L. Lopez-Diaz, M. Carpentieri, and G. Finocchio, J. Appl. Phys. 97, 10E302 (2005).
http://dx.doi.org/10.1063/1.1847292
21.
21.Z. Xiao, X. Ma, P. Wu, J. Zhang, L. Chen, and S. Shi, J. Appl. Phys. 102, 093907 (2007).
http://dx.doi.org/10.1063/1.2800999
22.
22.S. Mangin, D. Ravelosona, J. Katine, M. Carey, B. Terris, and E. E. Fullerton, Nat. Mater. 5, 210 (2006).
http://dx.doi.org/10.1038/nmat1595
23.
23.A. Kent, B. Özyilmaz, and E. Del Barco, Appl. Phys. Lett. 84, 3897 (2004).
http://dx.doi.org/10.1063/1.1739271
24.
24.M. Daniel and P. Sabareesan, J. Magn. Magn. Mater. 322, 675 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.10.039
25.
25.P. Grünberg, R. Schreiber, Y. Pang, M. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.2442
26.
26.M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
http://dx.doi.org/10.1103/PhysRev.96.99
26.T. Kasuya, Prog. Theor. Phys. 16, 45 (1956);
http://dx.doi.org/10.1143/PTP.16.58
26.K. Yosida, Phys. Rev. 106, 893 (1957);
http://dx.doi.org/10.1103/PhysRev.106.893
26.P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.1602
27.
27.M. Stiles, in Ultrathin Magnetic Structures III, edited by J. Bland and B. Heinrich (Springer, Berlin Heidelberg, 2005) pp. 99142.
http://dx.doi.org/10.1007/3-540-27163-5˙4
28.
28.S. Demokritov, E. Tsymbal, P. Grünberg, W. Zinn, and I. K. Schuller, Phys. Rev. B 49, 720 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.720
29.
29.L. Néel, C. R. Acad. Sci., 255, 1676 (1962).
30.
30.Y. Pennec, J. Camarero, J. C. Toussaint, S. Pizzini, M. Bonfim, F. Petroff, W. Kuch, F. Offi, K. Fukumoto, F. Nguyen Van Dau, and J. Vogel, Phys. Rev. B 69, 180402 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.180402
31.
31.B. Diény, in Magnetism, edited by É. du Trémolet de Lacheisserie, D. Gignoux, and M. Schlenker (Springer, New York, 2005) pp. 255304.
http://dx.doi.org/10.1007/978-0-387-23063-4˙6
32.
32.S. Russek, R. McMichael, M. Donahue, and S. Kaka, in Spin Dynamics in Confined Magnetic Structures II, edited by B. Hillebrands and K. Ounadjela (Springer, Berlin Heidelberg, 2003) pp. 93156.
http://dx.doi.org/10.1007/3-540-46097-7˙4
33.
33.J. Kools, W. Kula, D. Mauri, and T. Lin, J. Appl. Phys. 85, 4466 (1999).
http://dx.doi.org/10.1063/1.370376
34.
34.B. Schrag, A. Anguelouch, S. Ingvarsson, G. Xiao, Y. Lu, P. Trouilloud, A. Gupta, R. Wanner, W. Gallagher, P. Rice, and S. Parkin, Appl. Phys. Lett. 77, 2373 (2000).
http://dx.doi.org/10.1063/1.1315633
35.
35.T. Schulthess and W. Butler, J. Appl. Phys. 87, 5759 (2000).
http://dx.doi.org/10.1063/1.372513
36.
36.H. D. Chopra, D. X. Yang, P. J. Chen, D. C. Parks, and W. F. Egelhoff, Phys. Rev. B 61, 9642 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.9642
37.
37.K. Kim, S. Jang, K. Shin, H. Kim, and T. Kang, J. Appl. Phys. 89, 7612 (2001).
http://dx.doi.org/10.1063/1.1361056
38.
38.J. Moritz, F. Garcia, J. Toussaint, B. Dieny, and J. Nozieres, Europhys. Lett. 65, 123 (2004).
http://dx.doi.org/10.1209/epl/i2003-10063-9
39.
39.Y. B. Bazaliy, B. Jones, and S.-C. Zhang, J. Appl. Phys. 89, 6793 (2001).
http://dx.doi.org/10.1063/1.1362642
40.
40.T. Devolder, H. Schumacher, and C. Chappert, in Spin Dynamics in Confined Magnetic Structures III, edited by B. Hillebrands and A. Thiaville (Springer, Berlin Heidelberg, 2006) pp. 155.
http://dx.doi.org/10.1007/10938171˙1
41.
41.A. Anguelouch, B. Schrag, G. Xiao, Y. Lu, P. Trouilloud, R. Wanner, W. Gallagher, and S. Parkin, Appl. Phys. Lett. 76, 622 (2000).
http://dx.doi.org/10.1063/1.125838
42.
42.B. Choi, J. Rudge, E. Girgis, J. Kolthammer, Y. Hong, and A. Lyle, Appl. Phys. Lett. 91, 022501 (2007).
http://dx.doi.org/10.1063/1.2756109
43.
43.J. Zhang and R. White, IEEE Trans. Magn. 32, 4630 (1996).
http://dx.doi.org/10.1109/20.539101
44.
44.N. C. Emley, I. N. Krivorotov, O. Ozatay, A. G. F. Garcia, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 96, 247204 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.247204
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927546
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927546
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927546
2015-07-24
2016-12-05

Abstract

The impact of orange peel coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the switching dynamics of magnetization of the free layer governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The value of the critical current required to initiate the magnetization switching is calculated analytically by solving the LLGS equation and verified the same through numerical analysis. Results of numerical simulation of the LLGS equation using Runge-Kutta fourth order procedure shows that the presence of orange peel coupling between the spacer and the ferromagnetic layers reduces the switching time of the nanopillar device from 67 ps to 48 ps for an applied current density of 4 × 1012 −2. Also, the presence of orange peel coupling reduces the critical current required to initiate switching, and in this case, from 1.65 × 1012 −2 to 1.39 × 1012 −2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927546.html;jsessionid=iPpc3fkts8iJ-5W7BTwxVdnX.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927546&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927546&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927546'
Right1,Right2,Right3,