Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927549
1.
1.S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
http://dx.doi.org/10.1063/1.102730
2.
2.G. A. Prinz, Science 282, 1660 (1998).
http://dx.doi.org/10.1126/science.282.5394.1660
3.
3.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (1998).
http://dx.doi.org/10.1126/science.1065389
4.
4.Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
http://dx.doi.org/10.1103/PhysRev.115.485
5.
5.Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.319
6.
6.J. Nitta, F. E. Meijer, and H. Takayanagi, Appl. Phys. Lett. 75, 695 (1999).
http://dx.doi.org/10.1063/1.124485
7.
7.B. Molnár, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. B 69, 155335 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155335
8.
8.M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.1761
9.
9.Q. F. Sun and X. C. Xie, Phys. Rev. B 71, 155321 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.155321
10.
10.F. Zhai and H. Q. Xu, Phys. Rev. Lett. 94, 246601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.246601
11.
11.U. Aeberhard, K. Wakabayashi, and M. Sigrist, Phys. Rev. B 72, 075328 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075328
12.
12.R. Citro, F. Romeo, and M. Marinaro, Phys. Rev. B 74, 115329 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.115329
13.
13.E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 66, 075331 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.075331
14.
14.P. Földi, O. Kálmán, M. G. Benedict, and F. M. Peeters, Phys. Rev. B 73, 155325 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.155325
15.
15.I. A. Shelykh, N. G. Galkin, and N. T. Bagraev, Phys. Rev. B 72, 235316 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.235316
16.
16.L. G. Wang, K. Chang, and K. S. Chan, J. Appl. Phys. 105, 013710 (2009).
http://dx.doi.org/10.1063/1.3054322
17.
17.G. Y. Huang and S. D. Liang, Ann. Phys. 326, 1107 (2011).
http://dx.doi.org/10.1016/j.aop.2010.10.003
18.
18.F. Fallah and M. Esmaeilzadeh, J. Appl. Phys. 111, 043717 (2012).
http://dx.doi.org/10.1063/1.3688354
19.
19.L. X. Zhai, Y. Wang, and J. J. Liu, J. Appl. Phys. 116, 203703 (2014).
http://dx.doi.org/10.1063/1.4902847
20.
20.M. Dey, S. K. Maiti, S. Sil, and S. N. Karmakar, J. Appl. Phys. 114, 164318 (2013).
http://dx.doi.org/10.1063/1.4827840
21.
21.D. Frustaglia and K. Richter, Phys. Rev. B 69, 235310 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.235310
22.
22.F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, Phys. Rev. B 66, 033107 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.033107
23.
23.J. B. Xia, Phys. Rev. B 45, 3593 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.3593
24.
24.T. S. Kim, S. Y. Cho, C. K. Kim, and C. M. Ryu, Phys. Rev. B 65, 245307 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.245307
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927549
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927549
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927549
2015-07-24
2016-09-29

Abstract

Spin dependent transport in one-dimensional (1D) three-terminal rings is investigated in the presence of the Rashba spin-orbit coupling (RSOC). We focus on the spin dependent conductances and the components of the spin polarization vectors of the currents in the outgoing terminals. For this purpose, the transmission coefficients with respect to the , and basis are obtained, and the three components of the spin polarization vectors are evaluated analytically. The total conductances, the spin dependent conductances and the polarization components are obtained as functions of the incident electron energy, as well as the RSOC strength, for the totally symmetric, partially symmetric and asymmetric cases. It is found that the spin polarizations corresponding to the basis are zero, and that there is a symmetry in the total conductances, the spin dependent conductances and the polarization components for symmetric cases, i.e., = , , and . This symmetry is attributed to the rotational symmetry in the symmetrically coupled rings. For asymmetric cases, however, it is broken by the asymmetric lead-ring configuration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927549.html;jsessionid=wkojlFPH2wpPg_ovdy8be53g.x-aip-live-06?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927549&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927549&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927549'
Right1,Right2,Right3,