Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. H. Chen, M. Shao, K. Xiao, Z. R. He, D. W. Li, B. S. Lokitz, D. K. Hensley, S. M. Kilbey, J. E. Anthony, J. K. Keum, A. J. Rondinone, W. Y. Lee, S. Y. Hong, and Z. A. Bao, “Conjugated Polymer-Mediated Polymorphism of a High Performance, Small-Molecule Organic Semiconductor with Tuned Intermolecular Interactions, Enhanced Long-Range Order, and Charge Transport,” Chem. Mater. 25, 4378 (2013).
2.C. W. Sele, B. K. C. Kjellander, B. Niesen, M. J. Thornton, J. van der Putten, K. Myny, H. J. Wondergem, A. Moser, R. Resel, A. van Breemen, N. van Aerle, P. Heremans, J. E. Anthony, and G. H. Gelinck, “Controlled Deposition of Highly Ordered Soluble Acene Thin Films: Effect of Morphology and Crystal Orientation on Transistor Performance,” Adv. Mater. 21, 4926 (2009).
3.Z. R. He, S. Shaik, S. Bi, J. H. Chen, and D. W. Li, “Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology,” Appl. Phys. Lett. 106, 183301 (2015).
4.R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. McCulloch, J. Veres, D. D. C. Bradley, and T. D. Anthopoulos, “High-Performance Polymer-Small Molecule Blend Organic Transistors,” Adv. Mater. 21, 1166 (2009).
5.G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. Van Rens, and D. M. De Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nature Mater. 3, 106 (2004).
6.D. W. Li, E. J. Borkent, R. Nortrup, H. Moon, H. Katz, and Z. N. Bao, “Humidity effect on electrical performance of organic thin-film transistors,” Appl. Phys. Lett. 86, 042105 (2005).
7.I. Bae, S. J. Kang, Y. J. Shin, Y. J. Park, R. H. Kim, F. Mathevet, and C. Park, “Tailored Single Crystals of Triisopropylsilylethynyl Pentacene by Selective Contact Evaporation Printing,” Adv. Mater. 23, 3398 (2011).
8.Z. R. He, K. Xiao, W. Durant, D. K. Hensley, J. E. Anthony, K. L. Hong, S. M. Kilbey, J. H. Chen, and D. W. Li, “Enhanced Performance Consistency in Nanoparticle/TIPS Pentacene-Based Organic Thin Film Transistors,” Adv. Func. Mater. 21, 3617 (2011).
9.Z. R. He, D. W. Li, D. K. Hensley, A. J. Rondinone, and J. H. Chen, “Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends,” Appl. Phys. Lett. 103, 113301 (2013).
10.K. Asare-Yeboah, R. M. Frazier, G. Szulczewski, and D. W. Li, “Temperature gradient approach to grow large, preferentially oriented 6,13-bis(triisopropylsilylethynyl) pentacene crystals for organic thin film transistors,” J. Vac. Sci. Tech. B 32, 052401 (2014).
11.D. T. James, J. M. Frost, J. Wade, J. Nelson, and J. S. Kim, “Controlling Microstructure of Pentacene Derivatives by Solution Processing: Impact of Structural Anisotropy on Optoelectronic Properties,” Acs Nano 7, 7983 (2013).
12.Z. R. He, N. Lopez, X. L. Chi, and D. W. Li, “Solution-based 5,6,11,12-tetrachlorotetracene crystal growth for high-performance organic thin film transistors,” Org. Electron. 22, 191 (2015).
13.W. H. Lee, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, Y. D. Park, Y. H. Kim, J. I. Han, and K. Cho, “Solution-processable pentacene microcrystal arrays for high performance organic field-effect transistors,” Appl. Phys. Lett. 90, 132106 (2007).
14.H. Y. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. N. Bao, “High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C-60 Single Crystals,” J. Am. Chem. Soc. 134, 2760 (2012).
15.W. Han, M. Byun, L. Zhao, J. Rzayev, and Z. Lin, “Controlled evaporative self-assembly of hierarchically structured bottlebrush block copolymer with nanochannels,” J. Mater. Chem. 21, 14248 (2011).
16.S. W. Kwon, M. Byun, D. H. Yoon, J.-H. Park, W.-K. Kim, Z. Lin, and W. S. Yang, “Simple route to ridge optical waveguide fabricated via controlled evaporative self-assembly,” J. Mater. Chem. 21, 5230 (2011).
17.W. Han and Z. Q. Lin, “Learning from “Coffee Rings”: Ordered Structures Enabled by Controlled Evaporative Self-Assembly,” Angew. Chem. Int. Ed. 51, 1534 (2012).
18.D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. I. Han, and K. Cho, “High-mobility organic transistors based on single-crystalline microribbons of triisopropylisilylethynl pentacene via solution-phase self-assembly,” Adv. Mater. 19, 678 (2007).
19.H. Minemawari, T. Yamada, and T. Hasegawa, “Crystalline film growth of TIPS-pentacene by double-shot inkjet printing technique,” Japan. J. Appl. Phys. 53 (2014).
20.G. Q. Zhang, K. Liu, Y. Li, and M. J. Yang, “Novel poly(phenylene ethynylene)-type conjugated polymers containing diketopyrrolopyrrole or triphenylpyrazoline units in the main chain: Synthesis, characterization and photophysical properties,” Poly. Intern. 58, 665 (2009).
21.M. Akita, I. Osaka, and K. Takimiya, “Quinacridone-Diketopyrrolopyrrole-Based Polymers for Organic Field-Effect Transistors,” Materials 6, 1061 (2013).
22.M. J. Cho, J. Shin, S. H. Yoon, T. W. Lee, M. Kaur, and D. H. Choi, “A high-mobility terselenophene and diketopyrrolopyrrole containing copolymer in solution-processed thin film transistors,” Chem. Comm. 49, 7132 (2013).
23.L. T. Dou, J. Gao, E. Richard, J. B. You, C. C. Chen, K. C. Cha, Y. J. He, G. Li, and Y. Yang, “Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells,” J. Am. Chem. Soc. 134, 10071 (2012).
24.J. Ajuria, S. Chavhan, R. Tena-Zaera, J. H. Chen, A. J. Rondinone, P. Sonar, A. Dodabalapur, and R. Pacios, “Nanomorphology influence on the light conversion mechanisms in highly efficient diketopyrrolopyrrole based organic solar cells,” Org. Elect. 14, 326 (2013).
25.J. W. Lee, Y. S. Choi, and W. H. Jo, “Diketopyrrolopyrrole-based small molecules with simple structure for high V-OC organic photovoltaics,” Organic Electronics 13, 3060 (2012).
26.S. Y. Qu and H. Tian, “Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics,” Chem. Comm. 48, 3039 (2012).
27.A. B. Tamayo, X.-D. Dang, B. Walker, J. Seo, T. Kent, and T.-Q. Nguyen, “A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells,” Appl. Phys. Lett. 94 (2009).
28.K. Sakamoto, J. Ueno, K. Bulgarevich, and K. Miki, “Anisotropic charge transport and contact resistance of 6,13-bis(triisopropylsilylethynyl) pentacene field-effect transistors fabricated by a modified flow-coating method,” Appl. Phys. Lett. 100 (2012).
29.Y. Li, S. P. Singh, and P. Sonar, “A High Mobility P-Type DPP-Thieno 3,2-b thiophene Copolymer for Organic Thin-Film Transistors,” Adv. Mater. 22, 4862 (2010).
30.A. D. Hendsbee, J.-P. Sun, L. R. Rutledge, I. G. Hill, and G. C. Welch, “Electron deficient diketopyrrolopyrrole dyes for organic electronics: synthesis by direct arylation, optoelectronic characterization, and charge carrier mobility,” J. Mater. Chemi. A 2, 4198 (2014).
31.C. Kanimozhi, N. Yaacobi-Gross, E. K. Burnett, A. L. Briseno, T. D. Anthopoulos, U. Salzner, and S. Patil, “Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?,” Phys. Chem. Chem. Phys. 16, 17253 (2014).
32.J. S. Zambounis, Z. Hao, and A. Iqbal, “Latent pigments activated by heat,” Nature 388, 131 (1997).
33.Z. R. He, J. H. Chen, J. K. Keum, G. Szulczewski, and D. W. Li, “Improving performance of TIPS pentacene-based organic thin film transistors with small-molecule additives,” Org. Electron. 15, 150 (2014).
34.Z. R. He, J. H. Chen, Z. Z. Sun, G. Szulczewski, and D. W. Li, “Air-flow navigated crystal growth for TIPS pentacene-based organic thin-film transistors,” Org. Electron. 13, 1819 (2012).
35.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827 (1997).
36.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E 62, 756 (2000).
37.X. R. Li, B. K. C. Kjellander, J. E. Anthony, C. W. M. Bastiaansen, D. J. Broer, and G. H. Gelinck, “Azeotropic Binary Solvent Mixtures for Preparation of Organic Single Crystals,” Adv. Func. Mater. 19, 3610 (2009).
38.M. Kobashi and H. Takeuchi, “Inhomogeneity of spin-coated and cast non-regioregular poly(3-hexylthiophene) films. Structures and electrical and photophysical properties,” Macromolecules 31, 7273 (1998).

Data & Media loading...


Article metrics loading...



Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5″-n-hexyl-2,2′,5′,2″]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10−2 cm2/V s, which is the highest mobility from SMDPPEH ever reported.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd