Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Hara and K. Obara, “Effect of pressure on the formation of the intramolecular excited complex state in 4-(9-anthrylmethyl)-N,N-dimethylaniline,” Chem. Phys. Lett. 117, 96-98 (1985).
2.B. Y. Okamoto and H. G. Drickamer, “High pressure studies of solvent effects on anthracene spectra,” Proc. Natl. Acad. Sci. USA 71, 4757-4759 (1974).
3.W. S. Hammack, D. N. Hendrickson, and H. G. Drickamer, “Pressure-induced solvatochromism of the charge-transfer transitions in pyridinium betaines,” J. Phys. Chem. 93, 3483-3487 (1989).
4.M. Gross and R. Jaenicke, “Proteins under pressure,” Eur. J. Biochem. 221, 617-630 (1994).
5.J. D. Müller and E. Gratton, “High-pressure fluorescence correlation spectroscopy,” Biophys. J. 85, 2711-2719 (2003).
6.B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. USA 105, 13362-13366 (2008).
7.A. Picard, I. Daniel, G. Montagnac, and P. Oger, “In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by saccharomyces cerevisiae under high pressure,” Extremophiles 11, 445-452 (2007).
8.A. Picard, P. M. Oger, I. Daniel, H. Cardon, G. Montagnac, and J.-C. Chervin, “A sensitive pressure sensor for diamond anvil cell experiments up to 2 GPa: FluoSpheres,” J. Appl. Phys. 100, 034915 (2006).
9.Sirah Lasertechnik GmbH, Germany.
10.Y. Ishida, N. Iwasaki, K. Asaumi, T. Yajima, and Y. Maruyama, “Tunable picosecond pulses from a short-cavity dye laser under ultra-high pressure using diamond-anvil cell,” Appl. Phys. B (Photophys. Las. Chem.) 38, 159-163 (1985).
11.H. G. Drickamer, Z. A. Dreger, A. Zhu, and J. O. White, “Two examples of pressure tuning spectroscopy in solid polymeric media,” Ind. Eng. Chem. Res. 40, 3038-3041 (2001).
12.A. A. Banishev and D. D. Dlott, “Ultrafast pressure-sensitive paint for shock compression spectroscopy,” J. Appl. Phys. 115, 203515 (2014).
13.Y. Fu, J. M. Christensen, and D. D. Dlott, “Molecular adsorbates under high pressure: a study using surface-enhanced Raman scattering spectroscopy,” J. Phys.: Conf. Ser. 500, 122004 (2014).
14.F. Köhn, J. Hofkens, and F. C. De Schryver, “Emission of the contact ion pair of rhodamine dyes observed by single molecule spectroscopy,” Chem. Phys. Lett. 321, 372-378 (2000).
15.W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Internat. Edit. 8, 177-188 (1969).
16.J. T. Vivian and P. R. Callis, “Mechanisms of tryptophan fluorescence shifts in proteins,” Biophys. J. 80, 2093-2109 (2001).
17.J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer Publishing, New York, 2007), p. 205 ff.
18.E. Lippert, “Spektroskopische Bestimmung des Dipolmomentes Aromatischer Verbindungen im Ersten Angeregten Singulettzustand,” Z. Elektrochem. 61, 962-975 (1957).
19.N. G. Bakhshiev, “Universal molecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions, VII. Theory (general case of an isotropic solution),” Opt. Spectrosc. 16, 446-451 (1964);
19.A. Kawski, “Zur Lösungsmittelabhängigkeit der Wellenzahl von Elektronenbanden Lumineszierender Moleküle und über die Bestimmung der Elektrischen Dipolmomente im Anregungszustand,” Acta. Phys. Polon. 29, 507-518 (1966);
19.A. Chamma and P Viallet, “Determination du moment dipolaire d’une molecule dans un etat excite singulet: application a l’indole, au benzimidazole et a l’indazole,” C. R. Acad. Sci. Paris Ser. C. 270, 1901-1904 (1970).
20.M. M. Husain, R. Sindhu, and H. C. Tandon, “Determination of excited singlet-state dipole moments of hydroxy and methoxy coumarins using solvatochromic method,” Eur. J. Chem 3, 75-80 (2012).
21.B. Acemioglu, M. Arik, H. Efeoglu, and Y. Onganer, “Solvent effect on the ground and excited state dipole moments of fluorescein,” J. Mol. Struct. 548, 165-71 (2001).
22.S. Hirayama and R. P. Steer, “Solvatochromism and barochromism revisited and revealed,” J. Chem. Educ. 85, 317-319 (2008).
23.T. Elias, A. J. Sutton, C. Oppenheimer, K. A. Horton, H. Garbeil, V. Tsanev, A. J. S. McGonigle, and G. Williams-Jones, “Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight,” Bull. Volcanol. 68, 313-322 (2006).
24.S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
25.U. S. Raikar, V. B. Tangod, S. R. Mannopantar, and B. M. Mastiholi, “Ground and excited state dipole moments of coumarin 337 laser dye,” Opt. Commun. 283, 4289-4292 (2010).
26.O. Berg and E. L. Chronister, “Optical dephasing in pentacene-doped PMMA under high pressure,” J. Chem. Phys. 106, 4401-4408 (1997).
27.S. R. Inamdar, Y. F. Nadaf, and B. G. Mulimani, “Ground and excited state dipole moments of exalite 404 and exalite 417 UV laser dyes determined from solvatochromic shifts of absorption and fluorescence spectra,” J. Mol. Struct. 624, 47-51 (2003).
28.N. A. A. Al-Tememee, S. K. J. Al-Ani, and A. A. AbdAlfahdaw, “Effect of solvents on the dipole moments and fluorescence quantum yield of rhodamine dyes,” Isesco J. Sci. Technol. 9, 34-42 (2013).
29.E. R. Roberts and H. G. Drickamer, “High-pressure study of rhodamine B in solution and adsorbed on oriented single-crystal zinc oxide,” J. Phys. Chem. 89, 3092-3095 (1985).
30.L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys. 136, 124201 (2012).
31.J. H. Dymond and R. Malhotra, “The Tait Equation: 100 Years On,” Int. J. Thermophys. 9, 941-951 (1988).
32.W. B. Floriano and M. A. C. Nascimento, “Dielectric constant and density of water as a function of pressure at constant temperature,” Brazil. J. Phys. 34, 38-41 (2004).
33.I. Cibulka and M. Zikova, “Liquid densities at elevated pressures of 1-alkanols from C1 to C10: a critical evaluation of experimental data,” J. Chem. Eng. Data 39, 876-886 (1994).
34.Y. Uosaki, K. Ito, M. Kondo, S. Kitaura, and T. Moriyoshi, “Effect of pressure on the static relative permittivities of alkan-1-ols at 298.15 K,” J. Chem. Eng. Data 51, 1915-1921 (2006).
35.K. Vedam and C. C. Chen, “Importance of using Eulerian representation of strain in high pressure studies on liquids,” J. Chem. Phys. 77, 1461-1463 (1982).
36.C. C. Chen and K. Vedam, “Piezo- and elasto-optic properties of liquids under high pressure. III. Results on twelve more liquids,” J. Chem. Phys. 73, 4577-4584 (1980).
37.D. M. Dattelbaum, J. D. Jensen, A. M. Schwendt, E. M. Kober, M. W. Lewis, and R. A Menikoff, “Novel method for static equation-of-state-development: equation of state of a cross-linked poly(dimethylsiloxane) (PDMS) network to 10 GPa,” J. Chem. Phys. 122, 144903 (2005).
38.D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301-4326 (2012).
39.T. Glawdel, Z. Almutairi, S. Wang, and C. Ren, “Photobleaching absorbed rhodamine B to improve temperature measurements in PDMS channels,” Lab Chip 9, 171-174 (2009).
40.R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin. 27, 455-462 (1982).
41.J. A. Sutton, B. T. Fisher, and J. W. Fleming, “A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity,” Exp. Fluids 45, 869-881 (2008).
42.H. H. Seliger and W. D. McElroy, Light: Physical and Biological Action (Academic Press, 2013), p. 97 ff.
43.See supplementary material at for graphical user interfaces of control software (Fig. S1); example of wavelength range selection for peak fitting (Fig. S2); fitting parameters of the wavelength-pressure data (Tab. S3); wavelength and intensity shifts with pressure for FITC-melamine resin beads in ethanol (Fig. S4); rare example of reversible shift in wavelength with changing pressure for rhodamine B (1 ⋅ 10−5M) in PDMS (Fig. S5); mathematical basis of ‘deviation from linearity (DL)’ plots (Eqs. S6); derivation of equation(2)(Eqs. S7); DL vs. pressure plots for two more polarity functions different from those in the eqs. (1)-(3) (Fig. S8); example of irreversible wavelength shift of rhodamine B in ethanol, when water is penetrating in the solution during pressure cycling (Fig. S9).[Supplementary Material]

Data & Media loading...


Article metrics loading...



Fluorescence absorption and emission wavelengths can be influenced by environmental conditions, such as pressure, temperature and concentration. Here those effects are explored with an emphasis on determining the potential of rhodamine B and fluorescein as high-pressure indicators. The red shift of the emission peak maxima of rhodamine B and fluorescein are investigated in dependence of pressure up to 200 MPa using as the solvents water, ethanol and poly(dimethylsiloxane) (PDMS) with rhodamine B and water, polystyrene beads and melamine resin beads with fluorescein. Emission spectra recording and peak fitting is done automatically at time intervals of down to a second and with 0.3 nm wavelength resolution. The wavenumber-pressure relation for rhodamine B reveals increasing divergence from linear behavior in the sequence of the solvents water, ethanol and silicone rubber. Graphical correlation of the data diverging only slightly from linearity with a selection of polarity functions is enabled using the concept of ‘deviation from linearity (DL)’ plots. Using the example of rhodamine B dissolved in PDMS elastomer it is shown that there is a temperature induced irreversible molecular reordering, when scanning between 3 and ∼50°C, and a polarity change in the proximity of the embedded dye molecule. Swelling studies are performed with PDMS containing rhodamine B, where the elastomer is first put in water, then in ethanol and again in water. There a complex solvent exchange process is revealed in the elastomer demonstrating the feasibility of fluorescence spectroscopy, when observing variations in wavelength, to indicate and enlighten molecular rearrangements and swelling dynamics in the polymer, and polarity changes and solvent exchange processes in the dye solvation shell.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd