Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Nat Mater 6(4), 269-263 (2007).
2.V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, Nature Physics 3(7), 498-503 (2007).
3.R. L. Stamps, S. Breitkreutz, J. Akerman, A. V. Chumak, Y. Otani, G. E. W. Bauer, J. U. Thiele, M. Bowen, S. A. Majetich, M. Klaui, I. L. Prejbeanu, B. Dieny, N. M. Dempsey, and B. Hillebrands, J. Phys. D-Appl. Phys. 47(33), 28 (2014).
4.Z. M. Zeng, G. Finocchio, B. S. Zhang, P. K. Amiri, J. A. Katine, I. N. Krivorotov, Y. M. Huai, J. Langer, B. Azzerboni, K. L. Wang, and H. W. Jiang, Sci Rep 3, 5 (2013).
5.S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, S. Goolaup, A. O. Adeyeye, N. Singh, and M. P. Kostylev, Physical Review B 82(18), 184408 (2010).
6.J. Ding, M. Kostylev, and A. O. Adeyeye, Phys. Rev. Lett. 107(4), 047205 (2011).
7.C. S. Lin, H. S. Lim, C. C. Wang, A. O. Adeyeye, Z. K. Wang, S. C. Ng, and M. H. Kuok, Journal of Applied Physics 108(11), 114305 (2010).
8.N. Kuhlmann, A. Vogel, and G. Meier, Physical Review B 85(1), 014410 (2012).
9.J. Ding, M. Kostylev, and A. O. Adeyeye, Appl. Phys. Lett. 100(7), 073114 (2012).
10.T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289(5481), 930-932 (2000).
11.R. P. Cowburn, Nature Materials 6(4), 255-256 (2007).
12.A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298(5593), 577-580 (2002).
13.X. Zhu, Z. Liu, V. Metlushko, P. Grütter, and M. Freeman, Physical Review B 71(18) (2005).
14.B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schutz, Nature 444(7118), 461-464 (2006).
15.R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83(5), 1042-1045 (1999).
16.J. Thomas, Nat. Nanotechnol. 2(4), 206-206 (2007).
17.D. S. Han, A. Vogel, H. Jung, K. S. Lee, M. Weigand, H. Stoll, G. Schutz, P. Fischer, G. Meier, and S. K. Kim, Sci Rep 3, 7 (2013).
18.K. W. Moon, B. S. Chun, W. Kim, Z. Q. Qiu, and C. Hwang, Sci Rep 4, 6170 (2014).
19.R. Antos, Y. Otani, and J. Shibata, J. Phys. Soc. Jpn. 77(3), 8 (2008).
20.S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. Otani, Phys. Rev. Lett. 106(19), 4 (2011).
21.J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and P. A. Crowell, Physical Review B 67(2), 4 (2003).
22.M. Buess, R. Hollinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M. R. Scheinfein, D. Weiss, and C. H. Back, Phys. Rev. Lett. 93(7), 4 (2004).
23.J. J. Ding, G. N. Kakazei, X. M. Liu, K. Y. Guslienko, and A. O. Adeyeye, Sci Rep 4, 6 (2014).
24.M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C. H. Back, and G. Schuetz, Nat. Commun. 2, 6 (2011).
25.V. Castel, J. Ben Youssef, F. Boust, R. Weil, B. Pigeau, G. de Loubens, V. V. Naletov, O. Klein, and N. Vukadinovic, Physical Review B 85(18), 10 (2012).
26.L. Giovannini, F. Montoncello, F. Nizzoli, G. Gubbiotti, G. Carlotti, T. Okuno, T. Shinjo, and M. Grimsditch, Physical Review B 70(17), 4 (2004).
27.J. Park and P. Crowell, Phys. Rev. Lett. 95(16), 167201 (2005).
28.F. Hoffmann, G. Woltersdorf, K. Perzlmaier, A. Slavin, V. Tiberkevich, A. Bischof, D. Weiss, and C. Back, Physical Review B 76(1), 014416 (2007).
29.B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. 94(2), 4 (2005).
30.K. Y. Guslienko, A. N. Slavin, V. Tiberkevich, and S. K. Kim, Phys. Rev. Lett. 101(24), 4 (2008).
31.F. Guo, L. M. Belova, and R. D. McMichael, Physical Review B 91(6) (2015).
32.A. O. Adeyeye and N. Singh, Journal of Physics D: Applied Physics 41(15), 153001 (2008).
33.M. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0. (National Institute of Standards and Technology, Gaithersburg, MD, 1999).
34.D. Kumar, S. Barman, and A. Barman, Sci Rep 4, 8 (2014).
35.A. V. Oppenheim and R. W. Schafer, Discrete-Time Singal Processing (Englewood Cliffs, NJ: Prentice-Hall, 1989).
36.J. E. Miltat and M. J. Donahue, Handbook of Magnetism and Advanced Magnetic Materials (John Wiley & Sons, Ltd, 2007).

Data & Media loading...


Article metrics loading...



We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: NiFe) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd