Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927769
1.
1.K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Nat Mater 6(4), 269-263 (2007).
http://dx.doi.org/10.1038/nmat1867
2.
2.V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, Nature Physics 3(7), 498-503 (2007).
http://dx.doi.org/10.1038/nphys619
3.
3.R. L. Stamps, S. Breitkreutz, J. Akerman, A. V. Chumak, Y. Otani, G. E. W. Bauer, J. U. Thiele, M. Bowen, S. A. Majetich, M. Klaui, I. L. Prejbeanu, B. Dieny, N. M. Dempsey, and B. Hillebrands, J. Phys. D-Appl. Phys. 47(33), 28 (2014).
http://dx.doi.org/10.1088/0022-3727/47/33/333001
4.
4.Z. M. Zeng, G. Finocchio, B. S. Zhang, P. K. Amiri, J. A. Katine, I. N. Krivorotov, Y. M. Huai, J. Langer, B. Azzerboni, K. L. Wang, and H. W. Jiang, Sci Rep 3, 5 (2013).
5.
5.S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, S. Goolaup, A. O. Adeyeye, N. Singh, and M. P. Kostylev, Physical Review B 82(18), 184408 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.184408
6.
6.J. Ding, M. Kostylev, and A. O. Adeyeye, Phys. Rev. Lett. 107(4), 047205 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.047205
7.
7.C. S. Lin, H. S. Lim, C. C. Wang, A. O. Adeyeye, Z. K. Wang, S. C. Ng, and M. H. Kuok, Journal of Applied Physics 108(11), 114305 (2010).
http://dx.doi.org/10.1063/1.3506531
8.
8.N. Kuhlmann, A. Vogel, and G. Meier, Physical Review B 85(1), 014410 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.014410
9.
9.J. Ding, M. Kostylev, and A. O. Adeyeye, Appl. Phys. Lett. 100(7), 073114 (2012).
http://dx.doi.org/10.1063/1.3687177
10.
10.T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289(5481), 930-932 (2000).
http://dx.doi.org/10.1126/science.289.5481.930
11.
11.R. P. Cowburn, Nature Materials 6(4), 255-256 (2007).
http://dx.doi.org/10.1038/nmat1877
12.
12.A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298(5593), 577-580 (2002).
http://dx.doi.org/10.1126/science.1075302
13.
13.X. Zhu, Z. Liu, V. Metlushko, P. Grütter, and M. Freeman, Physical Review B 71(18) (2005).
14.
14.B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schutz, Nature 444(7118), 461-464 (2006).
http://dx.doi.org/10.1038/nature05240
15.
15.R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83(5), 1042-1045 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1042
16.
16.J. Thomas, Nat. Nanotechnol. 2(4), 206-206 (2007).
17.
17.D. S. Han, A. Vogel, H. Jung, K. S. Lee, M. Weigand, H. Stoll, G. Schutz, P. Fischer, G. Meier, and S. K. Kim, Sci Rep 3, 7 (2013).
18.
18.K. W. Moon, B. S. Chun, W. Kim, Z. Q. Qiu, and C. Hwang, Sci Rep 4, 6170 (2014).
http://dx.doi.org/10.1038/srep06170
19.
19.R. Antos, Y. Otani, and J. Shibata, J. Phys. Soc. Jpn. 77(3), 8 (2008).
http://dx.doi.org/10.1143/JPSJ.77.031004
20.
20.S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. Otani, Phys. Rev. Lett. 106(19), 4 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.197203
21.
21.J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and P. A. Crowell, Physical Review B 67(2), 4 (2003).
22.
22.M. Buess, R. Hollinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M. R. Scheinfein, D. Weiss, and C. H. Back, Phys. Rev. Lett. 93(7), 4 (2004).
23.
23.J. J. Ding, G. N. Kakazei, X. M. Liu, K. Y. Guslienko, and A. O. Adeyeye, Sci Rep 4, 6 (2014).
24.
24.M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C. H. Back, and G. Schuetz, Nat. Commun. 2, 6 (2011).
http://dx.doi.org/10.1038/ncomms1277
25.
25.V. Castel, J. Ben Youssef, F. Boust, R. Weil, B. Pigeau, G. de Loubens, V. V. Naletov, O. Klein, and N. Vukadinovic, Physical Review B 85(18), 10 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184419
26.
26.L. Giovannini, F. Montoncello, F. Nizzoli, G. Gubbiotti, G. Carlotti, T. Okuno, T. Shinjo, and M. Grimsditch, Physical Review B 70(17), 4 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.172404
27.
27.J. Park and P. Crowell, Phys. Rev. Lett. 95(16), 167201 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.167201
28.
28.F. Hoffmann, G. Woltersdorf, K. Perzlmaier, A. Slavin, V. Tiberkevich, A. Bischof, D. Weiss, and C. Back, Physical Review B 76(1), 014416 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.014416
29.
29.B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. 94(2), 4 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.027205
30.
30.K. Y. Guslienko, A. N. Slavin, V. Tiberkevich, and S. K. Kim, Phys. Rev. Lett. 101(24), 4 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.247203
31.
31.F. Guo, L. M. Belova, and R. D. McMichael, Physical Review B 91(6) (2015).
32.
32.A. O. Adeyeye and N. Singh, Journal of Physics D: Applied Physics 41(15), 153001 (2008).
http://dx.doi.org/10.1088/0022-3727/41/15/153001
33.
33.M. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0. (National Institute of Standards and Technology, Gaithersburg, MD, 1999).
34.
34.D. Kumar, S. Barman, and A. Barman, Sci Rep 4, 8 (2014).
35.
35.A. V. Oppenheim and R. W. Schafer, Discrete-Time Singal Processing (Englewood Cliffs, NJ: Prentice-Hall, 1989).
36.
36.J. E. Miltat and M. J. Donahue, Handbook of Magnetism and Advanced Magnetic Materials (John Wiley & Sons, Ltd, 2007).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927769
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927769
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927769
2015-07-29
2016-09-26

Abstract

We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: NiFe) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927769.html;jsessionid=afopceM4cry-xvFLG3X31vdo.x-aip-live-02?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927769&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927769&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927769'
Right1,Right2,Right3,