Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4927854
1.
1.F. D. M. Haldane, Phys. Lett. 93A, 464 (1983);
http://dx.doi.org/10.1016/0375-9601(83)90631-X
1.F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.1153
2.
2.K. Maisinger, U. Schollwöck, S. Brehmer, H. -J. Mikeska, and S. Yamamoto, Phys. Rev. B 58, 5908 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R5908
3.
3.S. Brehmer, H. -J. Mikeska, and S. Yamamoto, J. Phys.: Condens. Matter 9, 3921 (1997).
http://dx.doi.org/10.1088/0953-8984/9/19/012
4.
4.S. K. Pati, S. Ramasesha, and D. Sen, Phys. Rev. B 55, 8894 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.8894
5.
5.S. Yamamoto, T. Fukui, K. Maisinger, and U. Schollwöck, J. Phys.: Condens. Matter 10, 11033 (1998).
http://dx.doi.org/10.1088/0953-8984/10/48/023
6.
6.A. S. F. Tenório, R. R. Montenegro-Filho, and M. D. Coutinho-Filho, J. Phys.: Condens. Matter 23, 506003 (2011).
http://dx.doi.org/10.1088/0953-8984/23/50/506003
7.
7.K. Maisinger, U. Schollwöck, S. Brehmer, H. J. Mikeska, and S. Yamamoto, Phys. Rev. B 58, R5908 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R5908
8.
8.Congjun Wu, Bin Chen, Xi Dai, Yue Yu, and Zhao-Bin Su, Phys. Rev. B 60, 1057 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.1057
9.
9.Shou-Shu Gong, Wei Li, Yang Zhao, and Gang Su, Phys. Rev. B 81, 214431 (2010);
http://dx.doi.org/10.1103/PhysRevB.81.214431
9.Shou-Shu Gong and Gang Su, Phys. Rev. B 78, 104416 (2008);
http://dx.doi.org/10.1103/PhysRevB.78.104416
9.Bo Gu, Gang Su, and Song Gao, Phys. Rev. B 73, 134427 (2006);
http://dx.doi.org/10.1103/PhysRevB.73.134427
9.Bo Gu, Gang Su, and Song Gao, J. Phys.: Cond. Mat. 17, 6081 (2005).
http://dx.doi.org/10.1088/0953-8984/17/38/012
10.
10.M. Takahashi, Prog. Theor. Phys. Suppl. 87, 233 (1986);
http://dx.doi.org/10.1143/PTPS.87.233
10.M. Takahashi, Phys. Rev. Lett. 58, 168 (1987);
http://dx.doi.org/10.1103/PhysRevLett.58.168
10.M. Takahashi, Phys. Rev. B 36, 3791 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.3791
11.
11.Daniel P. Arovas and Assa Auerbach, Phys. Rev. B 38, 316 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.316
12.
12.M. Takahashi and M. Yamada, J. Phys. Soc, Jpn. 54, 2808 (1985);
http://dx.doi.org/10.1143/JPSJ.54.2808
12.M. Yamada and M. Takahashi, J. Phys. Soc, Jpn. 55, 2024 (1986).
http://dx.doi.org/10.1143/JPSJ.55.2024
13.
13.S. Ma, C. Broholm, D. H. Reich, B. J. Sternlieb, and R. W. Erwin, Phys. Rev. Lett. 69, 3571 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3571
14.
14.Y. Narumi, K. Kindo, M. Hagiwara, H. Nakano, A. Kawaguchi, K. Okunishi, and M. Kohno, Phys. Rev. B 69, 174405 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.174405
15.
15.A. Escuer, R. Vicente, and X. Solans, J. Chem. Soc. Dalton Trans. 531 (1997).
http://dx.doi.org/10.1039/a603070j
16.
16.M. Schmitt, O. Janson, S. Golbs, M. Schmidt, W. Schnelle, J. Richter, and H. Rosner, Phys. Rev. B 89, 174403 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.174403
17.
17.Y. Pei, M. Verdaguer, O. Kahn, J. Sletten, and J. P. Renard, Inorg. Chem. 26, 138 (1987);
http://dx.doi.org/10.1021/ic00248a027
17.P. J. van Koningsbruggen, O. Kahn, K. Nakatani, Y. Pei, J. P Renard, M. Drillon, and P. Legoll, Inorg. Chem. 29, 3325 (1990).
http://dx.doi.org/10.1021/ic00343a014
18.
18.A Gleizes and M Verdaguer, J. Am. Chem. Soc. 103, 7373 (1981).
http://dx.doi.org/10.1021/ja00414a074
19.
19.M. Verdaguer, A. Gleizes, J. P. Renard, and J. Seiden, Phys. Rev. B 29, 5144 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.5144
20.
20.R. Feyerherm, C. Mathonière, and O. Kahn, J. Phys.: Condens. Matter 13, 2639 (2001).
http://dx.doi.org/10.1088/0953-8984/13/11/319
21.
21.N. Fukushima, A. Honecker, S. Wessel, and W. Brenig, Phys. Rev. B 69, 174430 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.174430
22.
22.S. Yamamoto and H. Hori, Phys. Rev. B 72, 054423 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054423
23.
23.Assa Auerbach and Daniel P. Arovas, Phys. Rev. Lett. 61, 617 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.617
24.
24.Wei Li, Shi-Ju Ran, Shou-Shu Gong, Yang Zhao, Bin Xi, Fei Ye, and Gang Su, Phys. Rev. Lett. 106, 127202 (2011);
http://dx.doi.org/10.1103/PhysRevLett.106.127202
24.Xin Yan, Wei Li, Yang Zhao, Shi-Ju Ran, and Gang Su, Phys. Rev. B 85, 134425 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.134425
25.
25.S. Sarker, C. Jayaprakash, H. R. Krishnamurthy, and M. Ma, Phys. Rev. B 40, 5028 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.5028
26.
26.G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.070201
27.
27.R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.155117
28.
28.S. K. Pati, S. Ramasesha, and D. Sen, Phys. Rev. B 55, 8894 (1997);
http://dx.doi.org/10.1103/PhysRevB.55.8894
28.S. K. Pati, S. Ramasesha, and D. Sen, J. Phys.: Condens. Matter 9, 8707 (1997).
http://dx.doi.org/10.1088/0953-8984/9/41/016
29.
29.S. Yamamoto, S. Brehmer, and H. -J. Mikesha, Phys. Rev. B 57, 13610 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.13610
30.
30.N. D. Mermin and H. Wanger, Phys. Rev. Lett. 17, 1133 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.1133
31.
31.A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-Verlag, New York, 1994).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4927854
Loading
/content/aip/journal/adva/5/7/10.1063/1.4927854
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4927854
2015-07-30
2016-09-25

Abstract

The Schwinger-boson mean-field theory (SBMFT) and the linearized tensor renormalization group (LTRG) methods are complementarily applied to explore the thermodynamics of the quantum ferromagnetic mixed spin (, ) chains. It is found that the system has double excitations, i.e. a gapless and a gapped excitation; the low-lying spectrum can be approximated by with the ferromagnetic coupling; and the gap between the two branches is estimated to be △ ∼ . The Bose-Einstein condensation indicates a ferromagnetic ground state with magnetization . At low temperature, the spin correlation length is inversely proportional to temperature (), the susceptibility behaviors as , and the specific heat has the form of , with ( = 1, 2) and ( = 1, 2, 3) the temperature independent constants. The SBMFT results are shown to be in qualitatively agreement with those by the LTRG numerical calculations for = 1 and = 1/2. A comparison of the LTRG results with the experimental data of the model material ( )()( = ), is made, in which the coupling parameters of the compound are obtained. This study provides useful information for deeply understanding the physical properties of quantum ferromagnetic mixed spin chain materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4927854.html;jsessionid=pQhF16StLxqt_UZQ9vIkcb5E.x-aip-live-03?itemId=/content/aip/journal/adva/5/7/10.1063/1.4927854&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4927854&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4927854'
Right1,Right2,Right3,